Dual Polar Graphs, a nil-DAHA of Rank One, and Non-Symmetric Dual $q$-Krawtchouk Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\Gamma$ be a dual polar graph with diameter $D \geqslant 3$, having as vertices the maximal isotropic subspaces of a finite-dimensional vector space over the finite field $\mathbb{F}_q$ equipped with a non-degenerate form (alternating, quadratic, or Hermitian) with Witt index $D$. From a pair of a vertex $x$ of $\Gamma$ and a maximal clique $C$ containing $x$, we construct a $2D$-dimensional irreducible module for a nil-DAHA of type $(C^{\vee}_1, C_1)$, and establish its connection to the generalized Terwilliger algebra with respect to $x$, $C$. Using this module, we then define the non-symmetric dual $q$-Krawtchouk polynomials and derive their recurrence and orthogonality relations from the combinatorial points of view. We note that our results do not depend essentially on the particular choice of the pair $x$, $C$, and that all the formulas are described in terms of $q$, $D$, and one other scalar which we assign to $\Gamma$ based on the type of the form.
Keywords: dual polar graph; nil-DAHA; dual $q$-Krawtchouk polynomial; Terwilliger algebra; Leonard system.
@article{SIGMA_2018_14_a8,
     author = {Jae-Ho Lee and Hajime Tanaka},
     title = {Dual {Polar} {Graphs,} a {nil-DAHA} of {Rank} {One,} and {Non-Symmetric} {Dual} $q${-Krawtchouk} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a8/}
}
TY  - JOUR
AU  - Jae-Ho Lee
AU  - Hajime Tanaka
TI  - Dual Polar Graphs, a nil-DAHA of Rank One, and Non-Symmetric Dual $q$-Krawtchouk Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a8/
LA  - en
ID  - SIGMA_2018_14_a8
ER  - 
%0 Journal Article
%A Jae-Ho Lee
%A Hajime Tanaka
%T Dual Polar Graphs, a nil-DAHA of Rank One, and Non-Symmetric Dual $q$-Krawtchouk Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a8/
%G en
%F SIGMA_2018_14_a8
Jae-Ho Lee; Hajime Tanaka. Dual Polar Graphs, a nil-DAHA of Rank One, and Non-Symmetric Dual $q$-Krawtchouk Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a8/

[1] Bannai E., Ito T., Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984 | MR

[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 18, Springer-Verlag, Berlin, 1989 | DOI | MR

[3] Cherednik I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., 1992 (1992), 171–180 | DOI | MR

[4] Cherednik I., “Double affine Hecke algebras and Macdonald's conjectures”, Ann. of Math., 141 (1995), 191–216 | DOI | MR

[5] Cherednik I., “Macdonald's evaluation conjectures and difference Fourier transform”, Invent. Math., 122 (1995), 119–145, arXiv: q-alg/9503006 | DOI | MR

[6] Cherednik I., “Nonsymmetric Macdonald polynomials”, Int. Math. Res. Not., 1995 (1995), 483–515, arXiv: q-alg/9505029 | DOI | MR

[7] Cherednik I., Orr D., “One-dimensional nil-DAHA and Whittaker functions I”, Transform. Groups, 17 (2012), 953–987, arXiv: 1104.3918 | DOI | MR

[8] Cherednik I., Orr D., “One-dimensional nil-DAHA and Whittaker functions II”, Transform. Groups, 18 (2013), 23–59, arXiv: 1104.3918 | DOI | MR

[9] Cherednik I., Orr D., “Nonsymmetric difference Whittaker functions”, Math. Z., 279 (2015), 879–938, arXiv: 1302.4094 | DOI | MR

[10] Van Dam E. R., Koolen J. H., Tanaka H., “Distance-regular graphs”, Electron. J. Combin., 2016, #DS22, 156 pp., arXiv: 1410.6294

[11] Godsil C. D., Algebraic combinatorics, Chapman and Hall Mathematics Series, Chapman Hall, New York, 1993 | MR

[12] Hosoya R., Suzuki H., “Tight distance-regular graphs with respect to subsets”, European J. Combin., 28 (2007), 61–74 | DOI | MR

[13] Ito T., Tanabe K., Terwilliger P., “Some algebra related to $P$- and $Q$-polynomial association schemes”, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001, 167–192, arXiv: math.CO/0406556 | DOI | MR

[14] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR

[15] Koornwinder T. H., Bouzeffour F., “Nonsymmetric Askey–Wilson polynomials as vector-valued polynomials”, Appl. Anal., 90 (2011), 731–746, arXiv: 1006.1140 | DOI | MR

[16] Lee J.-H., “$Q$-polynomial distance-regular graphs and a double affine Hecke algebra of rank one”, Linear Algebra Appl., 439 (2013), 3184–3240, arXiv: 1307.5297 | DOI | MR

[17] Lee J.-H., “Nonsymmetric Askey–Wilson polynomials and $Q$-polynomial distance-regular graphs”, J. Combin. Theory Ser. A, 147 (2017), 75–118, arXiv: 1509.04433 | DOI | MR

[18] Lee J.-H., Tanaka H., “Dual polar graphs, a nil-DAHA of rank one, and non-symmetric dual $q$-Krawtchouk polynomials”, Sém. Lothar. Combin., 78B (2017), 42, 12 pp. | MR

[19] Leonard D. A., “Orthogonal polynomials, duality and association schemes”, SIAM J. Math. Anal., 13 (1982), 656–663 | DOI | MR

[20] Macdonald I. G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | DOI | MR

[21] Mazzocco M., “Non-symmetric basic hypergeometric polynomials and representation theory for confluent Cherednik algebras”, SIGMA, 10 (2014), 116, 10 pp., arXiv: 1409.4287 | DOI | MR

[22] Mazzocco M., “Confluences of the Painlevé equations, Cherednik algebras and $q$-Askey scheme”, Nonlinearity, 29 (2016), 2565–2608, arXiv: 1307.6140 | DOI | MR

[23] Nomura K., Terwilliger P., “The universal DAHA of type $(C_1^\vee,C_1)$ and Leonard pairs of $q$-Racah type”, Linear Algebra Appl., 533 (2017), 14–83, arXiv: 1701.06089 | DOI | MR

[24] Oblomkov A., Stoica E., “Finite dimensional representations of the double affine Hecke algebra of rank 1”, J. Pure Appl. Algebra, 213 (2009), 766–771, arXiv: math.RT/0409256 | DOI | MR

[25] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math., 150 (1999), 267–282, arXiv: q-alg/9710032 | DOI | MR

[26] Stanton D., “Some $q$-Krawtchouk polynomials on Chevalley groups”, Amer. J. Math., 102 (1980), 625–662 | DOI | MR

[27] Stanton D., “Three addition theorems for some $q$-Krawtchouk polynomials”, Geom. Dedicata, 10 (1981), 403–425 | DOI | MR

[28] Suzuki H., “The Terwilliger algebra associated with a set of vertices in a distance-regular graph”, J. Algebraic Combin., 22 (2005), 5–38 | DOI | MR

[29] Tanaka H., “A bilinear form relating two Leonard systems”, Linear Algebra Appl., 431 (2009), 1726–1739, arXiv: 0807.0385 | DOI | MR

[30] Tanaka H., “Vertex subsets with minimal width and dual width in $Q$-polynomial distance-regular graphs”, Electron. J. Combin., 18:1 (2011), #P167, 32 pp., arXiv: 1011.2000 | MR

[31] Terwilliger P., “The subconstituent algebra of an association scheme. I”, J. Algebraic Combin., 1 (1992), 363–388 | DOI | MR

[32] Terwilliger P., “The subconstituent algebra of an association scheme. II”, J. Algebraic Combin., 2 (1993), 73–103 | DOI | MR

[33] Terwilliger P., “The subconstituent algebra of an association scheme. III”, J. Algebraic Combin., 2 (1993), 177–210 | DOI | MR

[34] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR

[35] Terwilliger P., “Leonard pairs and the $q$-Racah polynomials”, Linear Algebra Appl., 387 (2004), 235–276, arXiv: math.QA/0306301 | DOI | MR

[36] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array”, Des. Codes Cryptogr., 34 (2005), 307–332, arXiv: math.RA/0306291 | DOI | MR

[37] Worawannotai C., “Dual polar graphs, the quantum algebra $U_q(\mathfrak{sl}_2)$, and Leonard systems of dual $q$-Krawtchouk type”, Linear Algebra Appl., 438 (2013), 443–497, arXiv: 1205.2144 | DOI | MR