@article{SIGMA_2018_14_a8,
author = {Jae-Ho Lee and Hajime Tanaka},
title = {Dual {Polar} {Graphs,} a {nil-DAHA} of {Rank} {One,} and {Non-Symmetric} {Dual} $q${-Krawtchouk} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a8/}
}
TY - JOUR AU - Jae-Ho Lee AU - Hajime Tanaka TI - Dual Polar Graphs, a nil-DAHA of Rank One, and Non-Symmetric Dual $q$-Krawtchouk Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a8/ LA - en ID - SIGMA_2018_14_a8 ER -
%0 Journal Article %A Jae-Ho Lee %A Hajime Tanaka %T Dual Polar Graphs, a nil-DAHA of Rank One, and Non-Symmetric Dual $q$-Krawtchouk Polynomials %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a8/ %G en %F SIGMA_2018_14_a8
Jae-Ho Lee; Hajime Tanaka. Dual Polar Graphs, a nil-DAHA of Rank One, and Non-Symmetric Dual $q$-Krawtchouk Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a8/
[1] Bannai E., Ito T., Algebraic combinatorics. I. Association schemes, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1984 | MR
[2] Brouwer A. E., Cohen A. M., Neumaier A., Distance-regular graphs, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 18, Springer-Verlag, Berlin, 1989 | DOI | MR
[3] Cherednik I., “Double affine Hecke algebras, Knizhnik–Zamolodchikov equations, and Macdonald's operators”, Int. Math. Res. Not., 1992 (1992), 171–180 | DOI | MR
[4] Cherednik I., “Double affine Hecke algebras and Macdonald's conjectures”, Ann. of Math., 141 (1995), 191–216 | DOI | MR
[5] Cherednik I., “Macdonald's evaluation conjectures and difference Fourier transform”, Invent. Math., 122 (1995), 119–145, arXiv: q-alg/9503006 | DOI | MR
[6] Cherednik I., “Nonsymmetric Macdonald polynomials”, Int. Math. Res. Not., 1995 (1995), 483–515, arXiv: q-alg/9505029 | DOI | MR
[7] Cherednik I., Orr D., “One-dimensional nil-DAHA and Whittaker functions I”, Transform. Groups, 17 (2012), 953–987, arXiv: 1104.3918 | DOI | MR
[8] Cherednik I., Orr D., “One-dimensional nil-DAHA and Whittaker functions II”, Transform. Groups, 18 (2013), 23–59, arXiv: 1104.3918 | DOI | MR
[9] Cherednik I., Orr D., “Nonsymmetric difference Whittaker functions”, Math. Z., 279 (2015), 879–938, arXiv: 1302.4094 | DOI | MR
[10] Van Dam E. R., Koolen J. H., Tanaka H., “Distance-regular graphs”, Electron. J. Combin., 2016, #DS22, 156 pp., arXiv: 1410.6294
[11] Godsil C. D., Algebraic combinatorics, Chapman and Hall Mathematics Series, Chapman Hall, New York, 1993 | MR
[12] Hosoya R., Suzuki H., “Tight distance-regular graphs with respect to subsets”, European J. Combin., 28 (2007), 61–74 | DOI | MR
[13] Ito T., Tanabe K., Terwilliger P., “Some algebra related to $P$- and $Q$-polynomial association schemes”, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001, 167–192, arXiv: math.CO/0406556 | DOI | MR
[14] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR
[15] Koornwinder T. H., Bouzeffour F., “Nonsymmetric Askey–Wilson polynomials as vector-valued polynomials”, Appl. Anal., 90 (2011), 731–746, arXiv: 1006.1140 | DOI | MR
[16] Lee J.-H., “$Q$-polynomial distance-regular graphs and a double affine Hecke algebra of rank one”, Linear Algebra Appl., 439 (2013), 3184–3240, arXiv: 1307.5297 | DOI | MR
[17] Lee J.-H., “Nonsymmetric Askey–Wilson polynomials and $Q$-polynomial distance-regular graphs”, J. Combin. Theory Ser. A, 147 (2017), 75–118, arXiv: 1509.04433 | DOI | MR
[18] Lee J.-H., Tanaka H., “Dual polar graphs, a nil-DAHA of rank one, and non-symmetric dual $q$-Krawtchouk polynomials”, Sém. Lothar. Combin., 78B (2017), 42, 12 pp. | MR
[19] Leonard D. A., “Orthogonal polynomials, duality and association schemes”, SIAM J. Math. Anal., 13 (1982), 656–663 | DOI | MR
[20] Macdonald I. G., Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, 157, Cambridge University Press, Cambridge, 2003 | DOI | MR
[21] Mazzocco M., “Non-symmetric basic hypergeometric polynomials and representation theory for confluent Cherednik algebras”, SIGMA, 10 (2014), 116, 10 pp., arXiv: 1409.4287 | DOI | MR
[22] Mazzocco M., “Confluences of the Painlevé equations, Cherednik algebras and $q$-Askey scheme”, Nonlinearity, 29 (2016), 2565–2608, arXiv: 1307.6140 | DOI | MR
[23] Nomura K., Terwilliger P., “The universal DAHA of type $(C_1^\vee,C_1)$ and Leonard pairs of $q$-Racah type”, Linear Algebra Appl., 533 (2017), 14–83, arXiv: 1701.06089 | DOI | MR
[24] Oblomkov A., Stoica E., “Finite dimensional representations of the double affine Hecke algebra of rank 1”, J. Pure Appl. Algebra, 213 (2009), 766–771, arXiv: math.RT/0409256 | DOI | MR
[25] Sahi S., “Nonsymmetric Koornwinder polynomials and duality”, Ann. of Math., 150 (1999), 267–282, arXiv: q-alg/9710032 | DOI | MR
[26] Stanton D., “Some $q$-Krawtchouk polynomials on Chevalley groups”, Amer. J. Math., 102 (1980), 625–662 | DOI | MR
[27] Stanton D., “Three addition theorems for some $q$-Krawtchouk polynomials”, Geom. Dedicata, 10 (1981), 403–425 | DOI | MR
[28] Suzuki H., “The Terwilliger algebra associated with a set of vertices in a distance-regular graph”, J. Algebraic Combin., 22 (2005), 5–38 | DOI | MR
[29] Tanaka H., “A bilinear form relating two Leonard systems”, Linear Algebra Appl., 431 (2009), 1726–1739, arXiv: 0807.0385 | DOI | MR
[30] Tanaka H., “Vertex subsets with minimal width and dual width in $Q$-polynomial distance-regular graphs”, Electron. J. Combin., 18:1 (2011), #P167, 32 pp., arXiv: 1011.2000 | MR
[31] Terwilliger P., “The subconstituent algebra of an association scheme. I”, J. Algebraic Combin., 1 (1992), 363–388 | DOI | MR
[32] Terwilliger P., “The subconstituent algebra of an association scheme. II”, J. Algebraic Combin., 2 (1993), 73–103 | DOI | MR
[33] Terwilliger P., “The subconstituent algebra of an association scheme. III”, J. Algebraic Combin., 2 (1993), 177–210 | DOI | MR
[34] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR
[35] Terwilliger P., “Leonard pairs and the $q$-Racah polynomials”, Linear Algebra Appl., 387 (2004), 235–276, arXiv: math.QA/0306301 | DOI | MR
[36] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other; comments on the parameter array”, Des. Codes Cryptogr., 34 (2005), 307–332, arXiv: math.RA/0306291 | DOI | MR
[37] Worawannotai C., “Dual polar graphs, the quantum algebra $U_q(\mathfrak{sl}_2)$, and Leonard systems of dual $q$-Krawtchouk type”, Linear Algebra Appl., 438 (2013), 443–497, arXiv: 1205.2144 | DOI | MR