Differential Geometric Aspects of Causal Structures
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is concerned with causal structures, which are defined as a field of tangentially non-degenerate projective hypersurfaces in the projectivized tangent bundle of a manifold. The local equivalence problem of causal structures on manifolds of dimension at least four is solved using Cartan's method of equivalence, leading to an $\{e\}$-structure over some principal bundle. It is shown that these structures correspond to parabolic geometries of type $(D_n,P_{1,2})$ and $(B_{n-1},P_{1,2})$, when $n\geq 4$, and $(D_3,P_{1,2,3})$. The essential local invariants are determined and interpreted geometrically. Several special classes of causal structures are considered including those that are a lift of pseudo-conformal structures and those referred to as causal structures with vanishing Wsf curvature. A twistorial construction for causal structures with vanishing Wsf curvature is given.
Keywords: causal geometry; conformal geometry; equivalence method; Cartan connection; parabolic geometry.
@article{SIGMA_2018_14_a79,
     author = {Omid Makhmali},
     title = {Differential {Geometric} {Aspects} of {Causal} {Structures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a79/}
}
TY  - JOUR
AU  - Omid Makhmali
TI  - Differential Geometric Aspects of Causal Structures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a79/
LA  - en
ID  - SIGMA_2018_14_a79
ER  - 
%0 Journal Article
%A Omid Makhmali
%T Differential Geometric Aspects of Causal Structures
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a79/
%G en
%F SIGMA_2018_14_a79
Omid Makhmali. Differential Geometric Aspects of Causal Structures. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a79/

[1] Aazami A. B., Javaloyes M. A., “Penrose's singularity theorem in a Finsler spacetime”, Classical Quantum Gravity, 33 (2016), 025003, 22 pp., arXiv: 1410.7595 | DOI | MR | Zbl

[2] Agrachev A. A., Zelenko I., “Geometry of Jacobi curves. I”, J. Dynam. Control Systems, 8 (2002), 93–140 | DOI | MR | Zbl

[3] Akivis M. A., Goldberg V. V., Projective differential geometry of submanifolds,, North-Holland Mathematical Library, 49, North-Holland Publishing Co., Amsterdam, 1993 | MR | Zbl

[4] Akivis M. A., Goldberg V. V., Conformal differential geometry and its generalizations, Pure and Applied Mathematics (New York), John Wiley Sons, Inc., New York, 1996 | DOI | MR | Zbl

[5] Alexandrov A. D., “A contribution to chronogeometry”, Canad. J. Math., 19 (1967), 1119–1128 | DOI | MR

[6] Anderson I., Nie Z., Nurowski P., “Non-rigid parabolic geometries of Monge type”, Adv. Math., 277 (2015), 24–55, arXiv: 1401.2174 | DOI | MR | Zbl

[7] Bao D., Chern S.-S., Shen Z., An introduction to Riemann–Finsler geometry, Graduate Texts in Mathematics, 200, Springer-Verlag, New York, 2000 | DOI | MR | Zbl

[8] Bao D., Robles C., Shen Z., “Zermelo navigation on {R}iemannian manifolds”, J. Differential Geom., 66 (2004), 377–435, arXiv: math.DG/0311233 | DOI | MR | Zbl

[9] Beem J. K., Ehrlich P. E., Easley K. L., Global Lorentzian geometry, Monographs and Textbooks in Pure and Applied Mathematics, 202, 2nd ed., Marcel Dekker, Inc., New York, 1996 | MR | Zbl

[10] Belgun F. A., “Null-geodesics in complex conformal manifolds and the LeBrun correspondence”, J. Reine Angew. Math., 536 (2001), 43–63, arXiv: math.DG/0002225 | DOI | MR | Zbl

[11] Bryant R. L., “Some remarks on Finsler manifolds with constant flag curvature”, Houston J. Math., 28 (2002), 221–262, arXiv: math.DG/0107228 | MR | Zbl

[12] Čap A., “Correspondence spaces and twistor spaces for parabolic geometries”, J. Reine Angew. Math., 582 (2005), 143–172, arXiv: math.DG/0102097 | DOI | MR | Zbl

[13] Čap A., Schichl H., “Parabolic geometries and canonical Cartan connections”, Hokkaido Math. J., 29 (2000), 453–505 | DOI | MR

[14] Čap A., Slovák J., Parabolic geometries, v. I, Mathematical Surveys and Monographs, 154, Background and general theory, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[15] Cartan É., “Sur un problème dвЂTMéquivalence et la théorie des espaces métriques généralisés”, Mathematica, 4 (1930), 114–136 | Zbl

[16] Cartan É., Les espaces de Finsler, Hermann, Paris, 1934 | MR | Zbl

[17] Chern S.-S., “The geometry of the differential equation $y'''=F(x,y,y',y'')$”, Sci. Rep. Nat. Tsing Hua Univ. Ser. A, 4 (1940), 97–111 | MR

[18] Chern S.-S., “Local equivalence and Euclidean connections in Finsler spaces”, Sci. Rep. Nat. Tsing Hua Univ. Ser. A, 5 (1948), 95–121 | MR | Zbl

[19] Daigneault A., Sangalli A., Einstein's static universe: an idea whose time has come back?, Notices Amer. Math. Soc., 48 (2001), 9–16 | MR | Zbl

[20] Doubrov B., Zelenko I., Prolongation of quasi-principal frame bundles and geometry of flag structures on manifolds, arXiv: 1210.7334

[21] Ehlers J., Pirani F. A. E., Schild A., “The geometry of free fall and light propagation”, General Relativity (papers in honour of J. L. Synge), Clarendon Press, Oxford, 1972, 63–84 | MR

[22] Fox D. J. F., Contact path geometries, arXiv: math.DG/0508343

[23] Fox D. J. F., “Contact projective structures”, Indiana Univ. Math. J., 54 (2005), 1547–1598, arXiv: math.DG/0402332 | DOI | MR | Zbl

[24] García-Parrado A., Senovilla J. M. M., “Causal structures and causal boundaries”, Classical Quantum Gravity, 22 (2005), R1–R84, arXiv: gr-qc/0501069 | DOI | MR | Zbl

[25] Gardner R. B., The method of equivalence and its applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 58, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1989 | DOI | MR | Zbl

[26] Godlinski M., Nurowski P., Geometry of third-order ODEs, arXiv: 0902.4129

[27] Griffiths P. A., Exterior differential systems and the calculus of variations, Progress in Mathematics, 25, Birkhäuser, Boston, Mass., 1983 | DOI | MR | Zbl

[28] Grossman D. A., “Torsion-free path geometries and integrable second order ODE systems”, Selecta Math. (N.S.), 6 (2000), 399–442 | DOI | MR | Zbl

[29] Guillemin V., Cosmology in $(2 + 1)$-dimensions, cyclic models, and deformations of $M_{2,1}$, Annals of Mathematics Studies, 121, Princeton University Press, Princeton, NJ, 1989 | DOI | MR

[30] Guts A. K., “Axiomatic causal theory of space-time”, Gravitation Cosmology, 1 (1995), 211–215 | MR | Zbl

[31] Hawking S. W., Ellis G. F. R., The large scale structure of space-time, v. 1, Cambridge Monographs on Mathematical Physics, Cambridge University Press, London–New York, 1973 | MR | Zbl

[32] Hilgert J., Ólafsson G., Causal symmetric spaces: geometry and harmonic analysis, Perspectives in Mathematics, 18, Academic Press, Inc., San Diego, CA, 1997 | MR

[33] Holland J., Sparling G., Causal geometries and third-order ordinary differential equations, arXiv: 1001.0202

[34] Holland J., Sparling G., Causal geometries, null geodesics, and gravity, arXiv: 1106.5254

[35] Hsu L., “Calculus of variations via the Griffiths formalism”, J. Differential Geom., 36 (1992), 551–589 | DOI | MR | Zbl

[36] Hwang J.-M., “Geometry of varieties of minimal rational tangents”, Current Developments in Algebraic Geometry, Math. Sci. Res. Inst. Publ., 59, Cambridge University Press, Cambridge, 2012, 197–226 | MR | Zbl

[37] Hwang J.-M., “Varieties of minimal rational tangents of codimension 1”, Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 629–649 | DOI | MR | Zbl

[38] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[39] Kronheimer E. H., Penrose R., “On the structure of causal spaces”, Proc. Cambridge Philos. Soc., 63 (1967), 481–501 | DOI | MR | Zbl

[40] Kruglikov B., The D., “The gap phenomenon in parabolic geometries”, J. Reine Angew. Math., 723 (2017), 153–215, arXiv: 1303.1307 | DOI | MR | Zbl

[41] LeBrun C. R., “Spaces of complex null geodesics in complex-Riemannian geometry”, Trans. Amer. Math. Soc., 278 (1983), 209–231 | DOI | MR | Zbl

[42] LeBrun C. R., “Twistors, ambitwistors, and conformal gravity”, Twistors in Mathematics and Physics, London Math. Soc. Lecture Note Ser., 156, Cambridge University Press, Cambridge, 1990, 71–86 | MR

[43] Levichev A. V., “Segal's chronometric theory as a completion of the special theory of relativity”, Russian Phys. J., 36 (1993), 780–783 | DOI | MR

[44] Libermann P., Marle C. M., Symplectic geometry and analytical mechanics, Mathematics and its Applications, 35, D. Reidel Publishing Co., Dordrecht, 1987 | DOI | MR | Zbl

[45] Low R. J., “The space of null geodesics (and a new causal boundary)”, Analytical and Numerical Approaches to Mathematical Relativity, Lecture Notes in Phys., 692, Springer, Berlin, 2006, 35–50 | DOI | MR | Zbl

[46] Makhmali O., Differential geometric aspects of causal structures, Ph.D. Thesis, McGill University, 2016

[47] Mettler T., “Reduction of $\beta$-integrable 2-Segre structures”, Comm. Anal. Geom., 21 (2013), 331–353, arXiv: 1110.3279 | DOI | MR | Zbl

[48] Minguzzi E., “Raychaudhuri equation and singularity theorems in Finsler spacetimes”, Classical Quantum Gravity, 32 (2015), 185008, 26 pp., arXiv: 1502.02313 | DOI | MR | Zbl

[49] Miyaoka R., “Lie contact structures and normal Cartan connections”, Kodai Math. J., 14 (1991), 13–41 | DOI | MR | Zbl

[50] Morimoto T., “Geometric structures on filtered manifolds”, Hokkaido Math. J., 22 (1993), 263–347 | DOI | MR | Zbl

[51] Olver P. J., Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[52] O'Neill B., Semi-Riemannian geometry: with applications to relativity, Pure and Applied Mathematics, 103, Academic Press, Inc., New York, 1983 | MR | Zbl

[53] Penrose R., “Gravitational collapse and space-time singularities”, Phys. Rev. Lett., 14 (1965), 57–59 | DOI | MR | Zbl

[54] Penrose R., Techniques of differential topology in relativity, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1972 | MR | Zbl

[55] Rund H., “Congruences of null-extremals in the calculus of variations”, J. Nat. Acad. Math. India, 1 (1983), 165–178 | MR

[56] Rund H., “Null-distributions in the calculus of variations of multiple integrals”, Math. Colloq. Univ. Cape Town, 13 (1984), 57–81 | MR | Zbl

[57] Sachs R., “Gravitational waves in general relativity. VI The outgoing radiation condition”, Proc. Roy. Soc. Ser. A, 264 (1961), 309–338 | DOI | MR | Zbl

[58] Sasaki T., Projective differential geometry and linear homogeneous differential equations, Department of Mathematics, Kobe University, 1999

[59] Sato H., Yamaguchi K., “Lie contact manifolds”, Geometry of Manifolds (Matsumoto, 1988), Perspect. Math., 8, Academic Press, Boston, MA, 1989, 191–238 | MR

[60] Sato H., Yoshikawa A. Y., “Third order ordinary differential equations and Legendre connections”, J. Math. Soc. Japan, 50 (1998), 993–1013 | DOI | MR | Zbl

[61] Schapira P., “Hyperbolic systems and propagation on causal manifolds”, Lett. Math. Phys., 103 (2013), 1149–1164, arXiv: 1305.3535 | DOI | MR | Zbl

[62] Segal I. E., Mathematical cosmology and extragalactic astronomy, Pure and Applied Mathematics, 68, Academic Press, New York–London, 1976 | MR

[63] Shen Z., Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, Dordrecht, 2001 | DOI | MR | Zbl

[64] Struik D. J., Lectures on classical differential geometry, 2nd ed., Dover Publications, Inc., New York, 1988 | MR | Zbl

[65] Tanaka N., “On the equivalence problems associated with simple graded Lie algebras”, Hokkaido Math. J., 8 (1979), 23–84 | DOI | MR | Zbl

[66] Taub A. H., “Book Review: Mathematical cosmology and extragalactic astronomy”, Bull. Amer. Math. Soc., 83 (1977), 705–711 | DOI | MR

[67] Wormald L. I., “A critique of Segal's chronometric theory”, Gen. Relativity Gravitation, 16 (1984), 393–401 | DOI | MR

[68] Yamaguchi K., “Differential systems associated with simple graded Lie algebras”, Progress in Differential Geometry, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993, 413–494 | DOI | MR | Zbl

[69] Ye Y.G., “Extremal rays and null geodesics on a complex conformal manifold”, Internat. J. Math., 5 (1994), 141–168, arXiv: alg-geom/9206004 | DOI | MR | Zbl

[70] Zadnik V., Lie contact structures and chains, arXiv: 0901.4433

[71] Zelenko I., “On Tanaka's prolongation procedure for filtered structures of constant type”, SIGMA, 5 (2009), 094, 21 pp., arXiv: 0906.0560 | DOI | MR | Zbl