@article{SIGMA_2018_14_a78,
author = {Leonard Huang},
title = {Metrized {Quantum} {Vector} {Bundles} over {Quantum} {Tori} {Built} from {Riemannian} {Metrics} and {Rosenberg's} {Levi{\textendash}Civita} {Connections}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a78/}
}
TY - JOUR AU - Leonard Huang TI - Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi–Civita Connections JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a78/ LA - en ID - SIGMA_2018_14_a78 ER -
%0 Journal Article %A Leonard Huang %T Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi–Civita Connections %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a78/ %G en %F SIGMA_2018_14_a78
Leonard Huang. Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi–Civita Connections. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a78/
[1] Aguilar K., Latrémolière F., “Quantum ultrametrics on AF algebras and the Gromov–Hausdorff propinquity”, Studia Math., 231 (2015), 149–193, arXiv: 1511.07114 | DOI | MR | Zbl
[2] Bratteli O., Elliott G. A., Jorgensen P. E. T., “Decomposition of unbounded derivations into invariant and approximately inner parts”, J. Reine Angew. Math., 346 (1984), 166–193 | DOI | MR | Zbl
[3] Latrémolière F., “Curved noncommutative tori as Leibniz quantum compact metric spaces”, J. Math. Phys., 56 (2015), 123503, 16 pp., arXiv: 1507.08771 | DOI | MR | Zbl
[4] Latrémolière F., “The quantum Gromov–Hausdorff propinquity”, Trans. Amer. Math. Soc., 368 (2016), 365–411, arXiv: 1302.4058 | DOI | MR | Zbl
[5] Latrémolière F., “Quantum metric spaces and the Gromov–Hausdorff propinquity”, Noncommutative Geometry and Optimal Transport, Contemp. Math., 676, Amer. Math. Soc., Providence, RI, 2016, 47–133, arXiv: 1506.04341 | DOI | MR | Zbl
[6] Latrémolière F., The modular Gromov–Hausdorff propinquity, arXiv: 1608.04881
[7] Latrémolière F., Convergence of the Heisenberg modules over quantum two-tori for the modular Gromov–Hausdorff propinquity, arXiv: 1703.07073 | MR
[8] Latrémolière F., Packer J., “Noncommutative solenoids and the Gromov–Hausdorff propinquity”, Proc. Amer. Math. Soc., 145 (2017), 2043–2057, arXiv: 1601.02707 | DOI | MR | Zbl
[9] Morrison T. J., Functional analysis: an introduction to Banach space theory, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001 | DOI | MR | Zbl
[10] Rieffel M. A., “Metrics on states from actions of compact groups”, Doc. Math., 3 (1998), 215–229, arXiv: math.OA/9807084 | MR
[11] Rieffel M. A., “Metrics on state spaces”, Doc. Math., 4 (1999), 559–600, arXiv: math.OA/9906151 | MR | Zbl
[12] Rieffel M. A., “Gromov–Hausdorff distance for quantum metric spaces”, Mem. Amer. Math. Soc., 168, 2004, 1–65, arXiv: math.OA/0011063 | DOI | MR
[13] Rieffel M. A., “Leibniz seminorms for “matrix algebras converge to the sphere””, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 543–578, arXiv: 0707.3229 | MR | Zbl
[14] Rosenberg J., “Levi-Civita's theorem for noncommutative tori”, SIGMA, 9 (2013), 071, 9 pp., arXiv: 1307.3775 | DOI | MR | Zbl