Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi–Civita Connections
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We build metrized quantum vector bundles, over a generically transcendental quantum torus, from Riemannian metrics, using Rosenberg's Levi—Civita connections for these metrics. We also prove that two metrized quantum vector bundles, corresponding to positive scalar multiples of a Riemannian metric, have distance zero between them with respect to the modular Gromov–Hausdorff propinquity.
Keywords: quantum torus; generically transcendental; quantum metric space; metrized quantum vector bundle; Riemannian metric; Levi–Civita connection.
@article{SIGMA_2018_14_a78,
     author = {Leonard Huang},
     title = {Metrized {Quantum} {Vector} {Bundles} over {Quantum} {Tori} {Built} from {Riemannian} {Metrics} and {Rosenberg's} {Levi{\textendash}Civita} {Connections}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a78/}
}
TY  - JOUR
AU  - Leonard Huang
TI  - Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi–Civita Connections
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a78/
LA  - en
ID  - SIGMA_2018_14_a78
ER  - 
%0 Journal Article
%A Leonard Huang
%T Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi–Civita Connections
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a78/
%G en
%F SIGMA_2018_14_a78
Leonard Huang. Metrized Quantum Vector Bundles over Quantum Tori Built from Riemannian Metrics and Rosenberg's Levi–Civita Connections. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a78/

[1] Aguilar K., Latrémolière F., “Quantum ultrametrics on AF algebras and the Gromov–Hausdorff propinquity”, Studia Math., 231 (2015), 149–193, arXiv: 1511.07114 | DOI | MR | Zbl

[2] Bratteli O., Elliott G. A., Jorgensen P. E. T., “Decomposition of unbounded derivations into invariant and approximately inner parts”, J. Reine Angew. Math., 346 (1984), 166–193 | DOI | MR | Zbl

[3] Latrémolière F., “Curved noncommutative tori as Leibniz quantum compact metric spaces”, J. Math. Phys., 56 (2015), 123503, 16 pp., arXiv: 1507.08771 | DOI | MR | Zbl

[4] Latrémolière F., “The quantum Gromov–Hausdorff propinquity”, Trans. Amer. Math. Soc., 368 (2016), 365–411, arXiv: 1302.4058 | DOI | MR | Zbl

[5] Latrémolière F., “Quantum metric spaces and the Gromov–Hausdorff propinquity”, Noncommutative Geometry and Optimal Transport, Contemp. Math., 676, Amer. Math. Soc., Providence, RI, 2016, 47–133, arXiv: 1506.04341 | DOI | MR | Zbl

[6] Latrémolière F., The modular Gromov–Hausdorff propinquity, arXiv: 1608.04881

[7] Latrémolière F., Convergence of the Heisenberg modules over quantum two-tori for the modular Gromov–Hausdorff propinquity, arXiv: 1703.07073 | MR

[8] Latrémolière F., Packer J., “Noncommutative solenoids and the Gromov–Hausdorff propinquity”, Proc. Amer. Math. Soc., 145 (2017), 2043–2057, arXiv: 1601.02707 | DOI | MR | Zbl

[9] Morrison T. J., Functional analysis: an introduction to Banach space theory, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001 | DOI | MR | Zbl

[10] Rieffel M. A., “Metrics on states from actions of compact groups”, Doc. Math., 3 (1998), 215–229, arXiv: math.OA/9807084 | MR

[11] Rieffel M. A., “Metrics on state spaces”, Doc. Math., 4 (1999), 559–600, arXiv: math.OA/9906151 | MR | Zbl

[12] Rieffel M. A., “Gromov–Hausdorff distance for quantum metric spaces”, Mem. Amer. Math. Soc., 168, 2004, 1–65, arXiv: math.OA/0011063 | DOI | MR

[13] Rieffel M. A., “Leibniz seminorms for “matrix algebras converge to the sphere””, Quanta of Maths, Clay Math. Proc., 11, Amer. Math. Soc., Providence, RI, 2010, 543–578, arXiv: 0707.3229 | MR | Zbl

[14] Rosenberg J., “Levi-Civita's theorem for noncommutative tori”, SIGMA, 9 (2013), 071, 9 pp., arXiv: 1307.3775 | DOI | MR | Zbl