$t$-Unique Reductions for Mészáros's Subdivision Algebra
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fix a commutative ring $\mathbf{k}$, two elements $\beta \in\mathbf{k}$ and $\alpha\in\mathbf{k}$ and a positive integer $n$. Let $\mathcal{X}$ be the polynomial ring over $\mathbf{k}$ in the $n(n-1) /2$ indeterminates $x_{i,j}$ for all $1\leq i$. Consider the ideal $\mathcal{J}$ of $\mathcal{X}$ generated by all polynomials of the form $x_{i,j}x_{j,k}-x_{i,k} ( x_{i,j}+x_{j,k}+\beta ) -\alpha$ for $1\leq i$. The quotient algebra $\mathcal{X}/\mathcal{J}$ (at least for a certain choice of $\mathbf{k}$, $\beta$ and $\alpha$) has been introduced by Karola Mészáros in [Trans. Amer. Math. Soc. 363 (2011), 4359–4382] as a commutative analogue of Anatol Kirillov's quasi-classical Yang–Baxter algebra. A monomial in $\mathcal{X}$ is said to be pathless if it has no divisors of the form $x_{i,j}x_{j,k}$ with $1\leq i$. The residue classes of these pathless monomials span the $\mathbf{k}$-module $\mathcal{X}/\mathcal{J}$, but (in general) are $\mathbf{k}$-linearly dependent. More combinatorially: reducing a given $p\in\mathcal{X}$ modulo the ideal $\mathcal{J}$ by applying replacements of the form $x_{i,j}x_{j,k}\mapsto x_{i,k} ( x_{i,j}+x_{j,k}+\beta ) +\alpha$ always eventually leads to a $\mathbf{k}$-linear combination of pathless monomials, but the result may depend on the choices made in the process. More recently, the study of Grothendieck polynomials has led Laura Escobar and Karola Mészáros [Algebraic Combin. 1 (2018), 395–414] to defining a $\mathbf{k}$-algebra homomorphism $D$ from $\mathcal{X}$ into the polynomial ring $\mathbf{k} [ t_{1},t_{2},\ldots,t_{n-1} ] $ that sends each $x_{i,j}$ to $t_{i}$. We show the following fact (generalizing a conjecture of Mészáros): If $p\in\mathcal{X}$, and if $q\in\mathcal{X}$ is a $\mathbf{k}$-linear combination of pathless monomials satisfying $p\equiv q\operatorname{mod}\mathcal{J}$, then $D(q) $ does not depend on $q$ (as long as $\beta$, $\alpha$ and $p$ are fixed). Thus, the above way of reducing a $p\in\mathcal{X}$ modulo $\mathcal{J}$ may lead to different results, but all of them become identical once $D$ is applied. We also find an actual basis of the $\mathbf{k}$-module $\mathcal{X}/\mathcal{J}$, using what we call forkless monomials.
Keywords: subdivision algebra; Yang–Baxter relations; Gröbner bases; Arnold relations; Orlik–Terao algebras; noncommutative algebra.
@article{SIGMA_2018_14_a77,
     author = {Darij Grinberg},
     title = {$t${-Unique} {Reductions} for {M\'esz\'aros's} {Subdivision} {Algebra}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a77/}
}
TY  - JOUR
AU  - Darij Grinberg
TI  - $t$-Unique Reductions for Mészáros's Subdivision Algebra
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a77/
LA  - en
ID  - SIGMA_2018_14_a77
ER  - 
%0 Journal Article
%A Darij Grinberg
%T $t$-Unique Reductions for Mészáros's Subdivision Algebra
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a77/
%G en
%F SIGMA_2018_14_a77
Darij Grinberg. $t$-Unique Reductions for Mészáros's Subdivision Algebra. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a77/

[1] Aparicio Monforte A., Kauers M., “Formal Laurent series in several variables”, Expo. Math., 31 (2013), 350–367 | DOI | MR | Zbl

[2] Arnold V. I., “The cohomology ring of the colored braid group”, Math. Notes, 5 (1969), 138–140 | DOI | MR | Zbl

[3] Becker T., Weispfenning V., Gröbner bases: a computational approach to commutative algebra, Graduate Texts in Mathematics, 141, Springer-Verlag, New York, 1993 | DOI | MR | Zbl

[4] Cordovil R., Etienne G., “A note on the Orlik–Solomon algebra”, European J. Combin., 22 (2001), 165–170, arXiv: math.CO/0203152 | DOI | MR | Zbl

[5] Cox D. A., Little J., O'Shea D., Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, 4th ed., Springer, Cham, 2015 | DOI | MR | Zbl

[6] de Graaf W., Computational algebra, Lecture notes, Version September 21, , 2016 http://www.science.unitn.it/d̃egraaf/compalg/notes.pdf

[7] Escobar L., Mészáros K., “Subword complexes via triangulations of root polytopes”, Algebraic Combin., 1 (2018), 395–414, arXiv: 1502.03997 | DOI | Zbl

[8] Grinberg D., $t$-unique reductions for Mészáros's subdivision algebra, arXiv: 1704.00839v6 | MR

[9] Grinberg D., Why does the type-A subdivision algebra look like the Rota–Baxter algebra axiom?, mathOverflow post #286510, https://mathoverflow.net/questions/286510

[10] Guo L., What is $\ldots$ a Rota–Baxter algebra?, Notices Amer. Math. Soc., 56 (2009), 1436–1437 | MR | Zbl

[11] Horiuchi H., Terao H., “The Poincaré series of the algebra of rational functions which are regular outside hyperplanes”, J. Algebra, 266 (2003), 169–179, arXiv: math.CO/0202296 | DOI | MR | Zbl

[12] Kirillov A. N., On some quadratic algebras, arXiv: q-alg/9705003 | MR

[13] Kirillov A. N., “On some algebraic and combinatorial properties of Dunkl elements”, Internat. J. Modern Phys. B, 26 (2012), 1243012, 28 pp. | DOI | MR | Zbl

[14] Kirillov A. N., “On some quadratic algebras I $\frac{1}{2}$: combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss–Catalan, universal Tutte and reduced polynomials”, SIGMA, 12 (2016), 002, 172 pp., arXiv: 1502.00426 | DOI | MR | Zbl

[15] Mathieu O., “The symplectic operad”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. 1, Progr. Math., 131, eds. S. Gindikin, J. Lepowsky, R. L. Wilson, Birkhäuser Boston, Boston, MA, 1995, 223–243 | DOI | MR | Zbl

[16] McBreen M., Proudfoot N., “Intersection cohomology and quantum cohomology of conical symplectic resolutions”, Algebr. Geom., 2 (2015), 623–641, arXiv: 1410.6240 | DOI | MR | Zbl

[17] Mészáros K., “Root polytopes, triangulations, and the subdivision algebra. I”, Trans. Amer. Math. Soc., 363 (2011), 4359–4382, arXiv: 0904.2194 | DOI | MR | Zbl

[18] Mészáros K., St. Dizier A., From generalized permutahedra to Grothendieck polynomials via flow polytopes, arXiv: 1705.02418

[19] Monasse D., Introduction aux bases de Gröbner: théorie et pratique, Lecture notes, Version November 19, }, 2002 {http://denis.monasse.free.fr/denis/articles/grobner.pdf

[20] Moseley D., “Equivariant cohomology and the Varchenko–Gelfand filtration”, J. Algebra, 472 (2017), 95–114, arXiv: 1110.5369 | DOI | MR | Zbl

[21] Orlik P., Terao H., “Commutative algebras for arrangements”, Nagoya Math. J., 134 (1994), 65–73 | DOI | MR | Zbl

[22] Proudfoot N., Speyer D., “A broken circuit ring”, Beiträge Algebra Geom., 47 (2006), 161–166, arXiv: math.CO/0410069 | MR | Zbl

[23] SageMath, the Sage Mathematics Software System, Version 7.6, , 2017 http://www.sagemath.org

[24] Schenck H., Tohǎneanu Ş.O., “The Orlik–Terao algebra and 2-formality”, Math. Res. Lett., 16 (2009), 171–182, arXiv: 0901.0253 | DOI | MR | Zbl

[25] Stanley R. P., Enumerative combinatorics, v. 1, Cambridge Studies in Advanced Mathematics, 49, 2nd ed., Cambridge University Press, Cambridge, 2012 http://math.mit.edu/r̃stan/ec/ | MR | Zbl

[26] Stanley R. P., Catalan numbers, Cambridge University Press, New York, 2015 | DOI | MR | Zbl

[27] Sturmfels B., Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, 2nd ed., Springer-Verlag, Vienna, 2008 | DOI | MR

[28] Terao H., “Algebras generated by reciprocals of linear forms”, J. Algebra, 250 (2002), 549–558 | DOI | MR | Zbl

[29] Varchenko A. N., Gel'fand I. M., “Heaviside functions of a configuration of hyperplanes”, Funct. Anal. Appl., 21 (1987), 255–270 | DOI | MR

[30] Yuzvinsky S., “Orlik–Solomon algebras in algebra and topology”, Russian Math. Surveys, 56 (2001), 293–364 | DOI | MR | Zbl