@article{SIGMA_2018_14_a77,
author = {Darij Grinberg},
title = {$t${-Unique} {Reductions} for {M\'esz\'aros's} {Subdivision} {Algebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a77/}
}
Darij Grinberg. $t$-Unique Reductions for Mészáros's Subdivision Algebra. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a77/
[1] Aparicio Monforte A., Kauers M., “Formal Laurent series in several variables”, Expo. Math., 31 (2013), 350–367 | DOI | MR | Zbl
[2] Arnold V. I., “The cohomology ring of the colored braid group”, Math. Notes, 5 (1969), 138–140 | DOI | MR | Zbl
[3] Becker T., Weispfenning V., Gröbner bases: a computational approach to commutative algebra, Graduate Texts in Mathematics, 141, Springer-Verlag, New York, 1993 | DOI | MR | Zbl
[4] Cordovil R., Etienne G., “A note on the Orlik–Solomon algebra”, European J. Combin., 22 (2001), 165–170, arXiv: math.CO/0203152 | DOI | MR | Zbl
[5] Cox D. A., Little J., O'Shea D., Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Mathematics, 4th ed., Springer, Cham, 2015 | DOI | MR | Zbl
[6] de Graaf W., Computational algebra, Lecture notes, Version September 21, , 2016 http://www.science.unitn.it/d̃egraaf/compalg/notes.pdf
[7] Escobar L., Mészáros K., “Subword complexes via triangulations of root polytopes”, Algebraic Combin., 1 (2018), 395–414, arXiv: 1502.03997 | DOI | Zbl
[8] Grinberg D., $t$-unique reductions for Mészáros's subdivision algebra, arXiv: 1704.00839v6 | MR
[9] Grinberg D., Why does the type-A subdivision algebra look like the Rota–Baxter algebra axiom?, mathOverflow post #286510, https://mathoverflow.net/questions/286510
[10] Guo L., What is $\ldots$ a Rota–Baxter algebra?, Notices Amer. Math. Soc., 56 (2009), 1436–1437 | MR | Zbl
[11] Horiuchi H., Terao H., “The Poincaré series of the algebra of rational functions which are regular outside hyperplanes”, J. Algebra, 266 (2003), 169–179, arXiv: math.CO/0202296 | DOI | MR | Zbl
[12] Kirillov A. N., On some quadratic algebras, arXiv: q-alg/9705003 | MR
[13] Kirillov A. N., “On some algebraic and combinatorial properties of Dunkl elements”, Internat. J. Modern Phys. B, 26 (2012), 1243012, 28 pp. | DOI | MR | Zbl
[14] Kirillov A. N., “On some quadratic algebras I $\frac{1}{2}$: combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss–Catalan, universal Tutte and reduced polynomials”, SIGMA, 12 (2016), 002, 172 pp., arXiv: 1502.00426 | DOI | MR | Zbl
[15] Mathieu O., “The symplectic operad”, Functional Analysis on the Eve of the 21st Century (New Brunswick, NJ, 1993), v. 1, Progr. Math., 131, eds. S. Gindikin, J. Lepowsky, R. L. Wilson, Birkhäuser Boston, Boston, MA, 1995, 223–243 | DOI | MR | Zbl
[16] McBreen M., Proudfoot N., “Intersection cohomology and quantum cohomology of conical symplectic resolutions”, Algebr. Geom., 2 (2015), 623–641, arXiv: 1410.6240 | DOI | MR | Zbl
[17] Mészáros K., “Root polytopes, triangulations, and the subdivision algebra. I”, Trans. Amer. Math. Soc., 363 (2011), 4359–4382, arXiv: 0904.2194 | DOI | MR | Zbl
[18] Mészáros K., St. Dizier A., From generalized permutahedra to Grothendieck polynomials via flow polytopes, arXiv: 1705.02418
[19] Monasse D., Introduction aux bases de Gröbner: théorie et pratique, Lecture notes, Version November 19, }, 2002 {http://denis.monasse.free.fr/denis/articles/grobner.pdf
[20] Moseley D., “Equivariant cohomology and the Varchenko–Gelfand filtration”, J. Algebra, 472 (2017), 95–114, arXiv: 1110.5369 | DOI | MR | Zbl
[21] Orlik P., Terao H., “Commutative algebras for arrangements”, Nagoya Math. J., 134 (1994), 65–73 | DOI | MR | Zbl
[22] Proudfoot N., Speyer D., “A broken circuit ring”, Beiträge Algebra Geom., 47 (2006), 161–166, arXiv: math.CO/0410069 | MR | Zbl
[23] SageMath, the Sage Mathematics Software System, Version 7.6, , 2017 http://www.sagemath.org
[24] Schenck H., Tohǎneanu Ş.O., “The Orlik–Terao algebra and 2-formality”, Math. Res. Lett., 16 (2009), 171–182, arXiv: 0901.0253 | DOI | MR | Zbl
[25] Stanley R. P., Enumerative combinatorics, v. 1, Cambridge Studies in Advanced Mathematics, 49, 2nd ed., Cambridge University Press, Cambridge, 2012 http://math.mit.edu/r̃stan/ec/ | MR | Zbl
[26] Stanley R. P., Catalan numbers, Cambridge University Press, New York, 2015 | DOI | MR | Zbl
[27] Sturmfels B., Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, 2nd ed., Springer-Verlag, Vienna, 2008 | DOI | MR
[28] Terao H., “Algebras generated by reciprocals of linear forms”, J. Algebra, 250 (2002), 549–558 | DOI | MR | Zbl
[29] Varchenko A. N., Gel'fand I. M., “Heaviside functions of a configuration of hyperplanes”, Funct. Anal. Appl., 21 (1987), 255–270 | DOI | MR
[30] Yuzvinsky S., “Orlik–Solomon algebras in algebra and topology”, Russian Math. Surveys, 56 (2001), 293–364 | DOI | MR | Zbl