@article{SIGMA_2018_14_a76,
author = {Masahiko Ito and Masatoshi Noumi},
title = {Connection {Formula} for the {Jackson} {Integral} of {Type} $A_n$ and {Elliptic} {Lagrange} {Interpolation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a76/}
}
TY - JOUR AU - Masahiko Ito AU - Masatoshi Noumi TI - Connection Formula for the Jackson Integral of Type $A_n$ and Elliptic Lagrange Interpolation JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a76/ LA - en ID - SIGMA_2018_14_a76 ER -
%0 Journal Article %A Masahiko Ito %A Masatoshi Noumi %T Connection Formula for the Jackson Integral of Type $A_n$ and Elliptic Lagrange Interpolation %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a76/ %G en %F SIGMA_2018_14_a76
Masahiko Ito; Masatoshi Noumi. Connection Formula for the Jackson Integral of Type $A_n$ and Elliptic Lagrange Interpolation. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a76/
[1] Aomoto K., “On elliptic product formulas for Jackson integrals associated with reduced root systems”, J. Algebraic Combin., 8 (1998), 115–126 | DOI | MR | Zbl
[2] Aomoto K., Ito M., “A determinant formula for a holonomic $q$-difference system associated with Jackson integrals of type $BC_n$”, Adv. Math., 221 (2009), 1069–1114 | DOI | MR | Zbl
[3] Aomoto K., Kato Y., “A $q$-analogue of de Rham cohomology associated with Jackson integrals”, Special Functions, ICM-90 Satell. Conf. Proc. (Okayama, 1990), Springer, Tokyo, 1991, 30–62 | DOI | MR
[4] Aomoto K., Kato Y., “Connection formula of symmetric $A$-type Jackson integrals”, Duke Math. J., 74 (1994), 129–143 | DOI | MR | Zbl
[5] Askey R., “Some basic hypergeometric extensions of integrals of Selberg and Andrews”, SIAM J. Math. Anal., 11 (1980), 938–951 | DOI | MR | Zbl
[6] Evans R. J., “Multidimensional $q$-beta integrals”, SIAM J. Math. Anal., 23 (1992), 758–765 | DOI | MR | Zbl
[7] Forrester P. J., Log-gases and random matrices, London Mathematical Society Monographs Series, 34, Princeton University Press, Princeton, NJ, 2010 | DOI | MR | Zbl
[8] Forrester P. J., Warnaar S. O., “The importance of the Selberg integral”, Bull. Amer. Math. Soc. (N.S.), 45 (2008), 489–534, arXiv: 0710.3981 | DOI | MR | Zbl
[9] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[10] Gustafson R. A., “Multilateral summation theorems for ordinary and basic hypergeometric series in ${\rm U}(n)$”, SIAM J. Math. Anal., 18 (1987), 1576–1596 | DOI | MR | Zbl
[11] Habsieger L., “Une $q$-intégrale de Selberg et Askey”, SIAM J. Math. Anal., 19 (1988), 1475–1489 | DOI | MR | Zbl
[12] Ishikawa M., Ito M., Okada S., “A compound determinant identity for rectangular matrices and determinants of Schur functions”, Adv. in Appl. Math., 51 (2013), 635–654, arXiv: 1106.2915 | DOI | MR | Zbl
[13] Ito M., Forrester P. J., “A bilateral extension of the $q$-Selberg integral”, Trans. Amer. Math. Soc., 369 (2017), 2843–2878, arXiv: 1309.0001 | DOI | MR | Zbl
[14] Ito M., Noumi M., “A generalization of the Sears–Slater transformation and elliptic Lagrange interpolation of type $BC_n$”, Adv. Math., 299 (2016), 361–380, arXiv: 1506.07267 | DOI | MR | Zbl
[15] Ito M., Sanada Y., “On the Sears–Slater basic hypergeometric transformations”, Ramanujan J., 17 (2008), 245–257 | DOI | MR | Zbl
[16] Kadell K. W. J., “A proof of Askey's conjectured $q$-analogue of Selberg's integral and a conjecture of Morris”, SIAM J. Math. Anal., 19 (1988), 969–986 | DOI | MR | Zbl
[17] Kadell K. W. J., “A proof of some $q$-analogues of Selberg's integral for $k=1$”, SIAM J. Math. Anal., 19 (1988), 944–968 | DOI | MR | Zbl
[18] Kadell K. W. J., “A simple proof of an Aomoto-type extension of Askey's last conjectured Selberg $q$-integral”, J. Math. Anal. Appl., 261 (2001), 419–440 | DOI | MR | Zbl
[19] Kaneko J., “$q$-Selberg integrals and Macdonald polynomials”, Ann. Sci. École Norm. Sup. (4), 29 (1996), 583–637 | DOI | MR | Zbl
[20] Kaneko J., “A $_1\Psi_1$ summation theorem for Macdonald polynomials”, Ramanujan J., 2 (1998), 379–386 | DOI | MR | Zbl
[21] Knop F., Sahi S., “Difference equations and symmetric polynomials defined by their zeros”, Int. Math. Res. Not., 1996 (1996), 473–486, arXiv: math.QA/9610017 | DOI | MR | Zbl
[22] Komori Y., Noumi M., Shiraishi J., “Kernel functions for difference operators of Ruijsenaars type and their applications”, SIGMA, 5 (2009), 054, 40 pp., arXiv: 0812.0279 | DOI | MR | Zbl
[23] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[24] Milne S. C., “An elementary proof of the Macdonald identities for $A^{(1)}_l$”, Adv. Math., 57 (1985), 34–70 | DOI | MR | Zbl
[25] Milne S. C., “A ${\rm U}(n)$ generalization of Ramanujan's $_1\Psi_1$ summation”, J. Math. Anal. Appl., 118 (1986), 263–277 | DOI | MR | Zbl
[26] Milne S. C., Schlosser M., “A new $A_n$ extension of Ramanujan's ${}_1\psi_1$ summation with applications to multilateral $A_n$ series”, Rocky Mountain J. Math., 32 (2002), 759–792, arXiv: math.CA/0010162 | DOI | MR | Zbl
[27] Mimachi K., “Connection problem in holonomic $q$-difference system associated with a Jackson integral of Jordan–Pochhammer type”, Nagoya Math. J., 116 (1989), 149–161 | DOI | MR | Zbl
[28] Rosengren H., “Elliptic hypergeometric series on root systems”, Adv. Math., 181 (2004), 417–447, arXiv: math.CA/0207046 | DOI | MR | Zbl
[29] Selberg A., “Remarks on a multiple integral”, Norsk Mat. Tidsskr., 26 (1944), 71–78 | MR
[30] Slater L. J., “General transformations of bilateral series”, Quart. J. Math., Oxford Ser. (2), 3 (1952), 73–80 | DOI | MR | Zbl
[31] Tannery J., Molk J., Éléments de la théorie des fonctions elliptiques, v. III, Calcul intégral. Première partie, Gauthier-Villars, Paris, 1898
[32] Tarasov V., Varchenko A., Geometry of $q$-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque, 246, 1997, vi+135 pp., arXiv: math.QA/9703044 | MR
[33] Warnaar S. O., “$q$-Selberg integrals and Macdonald polynomials”, Ramanujan J., 10 (2005), 237–268 | DOI | MR | Zbl
[34] Warnaar S. O., “Ramanujan's ${}_1\psi_1$ summation”, Notices Amer. Math. Soc., 60 (2013), 18–22, arXiv: 1206.2435
[35] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | MR | Zbl