@article{SIGMA_2018_14_a74,
author = {Anton Dzhamay and Tomoyuki Takenawa},
title = {On {Some} {Applications} of {Sakai's} {Geometric} {Theory} of {Discrete} {Painlev\'e} {Equations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a74/}
}
TY - JOUR AU - Anton Dzhamay AU - Tomoyuki Takenawa TI - On Some Applications of Sakai's Geometric Theory of Discrete Painlevé Equations JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a74/ LA - en ID - SIGMA_2018_14_a74 ER -
%0 Journal Article %A Anton Dzhamay %A Tomoyuki Takenawa %T On Some Applications of Sakai's Geometric Theory of Discrete Painlevé Equations %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a74/ %G en %F SIGMA_2018_14_a74
Anton Dzhamay; Tomoyuki Takenawa. On Some Applications of Sakai's Geometric Theory of Discrete Painlevé Equations. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a74/
[1] Boalch P., “Quivers and difference Painlevé equations”, Groups and Symmetries, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 25–51, arXiv: 0706.2634 | DOI | MR | Zbl
[2] Borodin A., “Discrete gap probabilities and discrete Painlevé equations”, Duke Math. J., 117 (2003), 489–542, arXiv: math-ph/0111008 | DOI | MR | Zbl
[3] Borodin A., Boyarchenko D., “Distribution of the first particle in discrete orthogonal polynomial ensembles”, Comm. Math. Phys., 234 (2003), 287–338, arXiv: math-ph/0204001 | DOI | MR | Zbl
[4] Carstea A. S., Takenawa T., “A note on minimization of rational surfaces obtained from birational dynamical systems”, J. Nonlinear Math. Phys., 20:1 (2013), 17–33, arXiv: 1211.5393 | DOI | MR
[5] Dolgachev I. V., “Weyl groups and Cremona transformations”, Singularities (Arcata, Calif., 1981), v. 1, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., Providence, RI, 1983, 283–294 | DOI
[6] Dzhamay A., Sakai H., Takenawa T., Discrete Schlesinger transformations, their Hamiltonian formulation, and difference Painlevé equations, arXiv: 1302.2972
[7] Dzhamay A., Takenawa T., “Geometric analysis of reductions from Schlesinger transformations to difference Painlevé equations”, Algebraic and Analytic Aspects of Integrable Systems and Painlevé Equations, Contemp. Math., 651, Amer. Math. Soc., Providence, RI, 2015, 87–124, arXiv: 1408.3778 | DOI | MR | Zbl
[8] Grammaticos B., Ramani A., “Discrete Painlevé equations: a review”, Discrete Integrable Systems, Lecture Notes in Phys., 644, Springer, Berlin, 2004, 245–321 | DOI | Zbl
[9] Grammaticos B., Ramani A., Ohta Y., “A unified description of the asymmetric $q\text{-P}_{\rm V}$ and $d\text{-P}_{\rm IV}$ equations and their Schlesinger transformations”, J. Nonlinear Math. Phys., 10 (2003), 215–228, arXiv: nlin.SI/0310050 | DOI | MR | Zbl
[10] Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the Painlevé property?, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl
[11] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé: a modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | Zbl
[12] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | Zbl
[13] Kajiwara K., Noumi M., Yamada Y., “Geometric aspects of Painlevé equations”, J. Phys. A: Math. Theor., 50 (2017), 073001, 164 pp., arXiv: 1509.08186 | DOI | Zbl
[14] Mase T., Studies on spaces of initial conditions for nonautonomous mappings of the plane, arXiv: 1702.05884
[15] Noumi M., Painlevé equations through symmetry, Translations of Mathematical Monographs, 223, Amer. Math. Soc., Providence, RI, 2004 | DOI
[16] Noumi M., Yamada Y., “Affine Weyl groups, discrete dynamical systems and Painlevé equations”, Comm. Math. Phys., 199 (1998), 281–295, arXiv: math.QA/9804132 | DOI | MR | Zbl
[17] Okamoto K., “Sur les feuilletages associés aux équations du second ordre à points critiques fixes de P Painlevé”, Japan. J. Math. (N.S.), 5 (1979), 1–79 | DOI | MR | Zbl
[18] Painlevé P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 | DOI | MR
[19] Quispel G. R. W., Roberts J. A. G., Thompson C. J., “Integrable mappings and soliton equations”, Phys. Lett. A, 126 (1988), 419–421 | DOI | MR | Zbl
[20] Rains E. M., Generalized Hitchin systems on rational surfaces, arXiv: 1307.4033
[21] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl
[22] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl
[23] Tamizhmani K. M., Ramani A., Grammaticos B., Tamizhmani T., “Discrete integrability”, Classical and Quantum Nonlinear Integrable Systems: Theory and Application, ed. A. Kundu, IOP Publishing, Briston, 2003, 64–94
[24] Tracy C. A., Widom H., “Level-spacing distributions and the Airy kernel”, Comm. Math. Phys., 159 (1994), 151–174, arXiv: hep-th/9211141 | DOI | MR | Zbl