@article{SIGMA_2018_14_a73,
author = {Julia Bernatska and Dmitry Leykin},
title = {On {Regularization} of {Second} {Kind} {Integrals}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a73/}
}
Julia Bernatska; Dmitry Leykin. On Regularization of Second Kind Integrals. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a73/
[1] Baker H. F., Abelian functions: Abel's theorem and the allied theory of theta functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995 | Zbl
[2] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Rational analogues of abelian functions”, Funct. Anal. Appl., 33 (1999), 83–94 | DOI | MR | Zbl
[3] Buchstaber V. M., Enolskii V. Z., Leykin D. V., “Uniformization of Jacobi varieties of trigonal curves and nonlinear differential equations”, Funct. Anal. Appl., 34 (2000), 159–171 | DOI | MR | Zbl
[4] Buchstaber V. M., Enolskii V. Z., Leykin D. V., Multi-dimensional sigma-functions, arXiv: 1208.0990
[5] Bukhshtaber V. M., Leykin D. V., “Heat equations in a nonholomic frame”, Funct. Anal. Appl., 38 (2004), 88–101 | DOI | MR | Zbl
[6] Bukhshtaber V. M., Leykin D. V., “Addition laws on Jacobian varieties of plane algebraic curves”, Proc. Steklov Inst. Math., 251 (2005), 49–120 | Zbl
[7] Bukhshtaber V. M., Leykin D. V., “Solution of the problem of differentiation of Abelian functions over parameters for families of $(n,s)$-curves”, Funct. Anal. Appl., 42 (2008), 268–278 | DOI | MR | Zbl
[8] Eilbeck J. C., England M., Ônishi Y., “Abelian functions associated with genus three algebraic curves”, LMS J. Comput. Math., 14 (2011), 291–326, arXiv: 1008.0289 | DOI | MR | Zbl
[9] Eilbeck J. C., Enolski V. Z., Matsutani S., Ônishi Y., Previato E., “Abelian functions for trigonal curves of genus three”, Int. Math. Res. Not., 2008 (2008), rnm 140, 38 pp., arXiv: math.AG/0610019 | DOI
[10] Eilbeck J. C., Enolskii V. Z., Leykin D. V., “On the Kleinian construction of abelian functions of canonical algebraic curves”, SIDE III – Symmetries and Integrability of Difference Equations (Sabaudia, 1998), CRM Proc. Lecture Notes, 25, Amer. Math. Soc., Providence, RI, 2000, 121–138 | DOI | Zbl
[11] Hodge W. V. D., Atiyah M. F., “Integrals of the second kind on an algebraic variety”, Ann. of Math., 62 (1955), 56–91 | DOI | MR | Zbl
[12] Nakayashiki A., “On algebraic expressions of sigma functions for $(n,s)$ curves”, Asian J. Math., 14 (2010), 175–211, arXiv: 0803.2083 | DOI | MR
[13] Suzuki J., “Klein's fundamental 2-form of second kind for the $C_{ab}$ curves”, SIGMA, 13 (2017), 017, 13 pp., arXiv: 1701.00931 | DOI | Zbl
[14] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996 | DOI | Zbl