The Chevalley–Weil Formula for Orbifold Curves
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the 1930s Chevalley and Weil gave a formula for decomposing the canonical representation on the space of differential forms of the Galois group of a ramified Galois cover of Riemann surfaces. In this article we prove an analogous Chevalley–Weil formula for ramified Galois covers of orbifold curves. We then specialize the formula to the case when the base orbifold curve is the (reduced) modular orbifold. As an application of this latter formula we decompose the canonical representations of modular curves of full, prime level and of Fermat curves of arbitrary exponent.
Keywords: orbifold curves; automorphisms; modular curves; Fermat curves.
@article{SIGMA_2018_14_a70,
     author = {Luca Candelori},
     title = {The {Chevalley{\textendash}Weil} {Formula} for {Orbifold} {Curves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a70/}
}
TY  - JOUR
AU  - Luca Candelori
TI  - The Chevalley–Weil Formula for Orbifold Curves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a70/
LA  - en
ID  - SIGMA_2018_14_a70
ER  - 
%0 Journal Article
%A Luca Candelori
%T The Chevalley–Weil Formula for Orbifold Curves
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a70/
%G en
%F SIGMA_2018_14_a70
Luca Candelori. The Chevalley–Weil Formula for Orbifold Curves. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a70/

[1] Barraza P., Rojas A. M., “The group algebra decomposition of Fermat curves of prime degree”, Arch. Math. (Basel), 104 (2015), 145–155 | DOI | MR | Zbl

[2] Behrend K., Noohi B., “Uniformization of Deligne–Mumford curves”, J. Reine Angew. Math., 599 (2006), 111–153, arXiv: math.AG/0504309 | DOI | MR | Zbl

[3] Candelori L., Franc C., “Vector-valued modular forms and the modular orbifold of elliptic curves”, Int. J. Number Theory, 13 (2017), 39–63, arXiv: 1506.09192 | DOI | MR | Zbl

[4] Candelori L., Franc C., Kopp G. S., “Generating weights for the Weil representation attached to an even order cyclic quadratic module”, J. Number Theory, 180 (2017), 474–497, arXiv: 1606.07844 | DOI | MR | Zbl

[5] Candelori L., Hartland T., Marks C., Yépez D., “Indecomposable vector-valued modular forms and periods of modular curves”, Res. Number Theory, 4 (2018), 17, 24 pp., arXiv: 1707.01693 | DOI | MR

[6] Chevalley C., Weil A., Hecke E., “Über das Verhalten der Integrale 1. Gattung bei Automorphismen des Funktionenkörpers”, Abh. Math. Sem. Univ. Hamburg, 10 (1934), 358–361 | DOI | MR

[7] Furuta M., Steer B., “Seifert fibred homology $3$-spheres and the Yang–Mills equations on Riemann surfaces with marked points”, Adv. Math., 96 (1992), 38–102 | DOI | MR | Zbl

[8] Kani E., “The Galois-module structure of the space of holomorphic differentials of a curve”, J. Reine Angew. Math., 367 (1986), 187–206 | DOI | MR | Zbl

[9] Karpilovsky G., Group representations, v. 3, North-Holland Mathematics Studies, 180, North-Holland Publishing Co., Amsterdam, 1994 | MR | Zbl

[10] Lang S., Introduction to algebraic and abelian functions, Graduate Texts in Mathematics, 89, 2nd ed., Springer-Verlag, New York–Berlin, 1982 | DOI | Zbl

[11] Le Bruyn L., “Dense families of $B_3$-representations and braid reversion”, J. Pure Appl. Algebra, 215 (2011), 1003–1014 | DOI | MR | Zbl

[12] Mason G., “2-dimensional vector-valued modular forms”, Ramanujan J., 17 (2008), 405–427 | DOI | MR | Zbl

[13] Mehta V. B., Seshadri C. S., “Moduli of vector bundles on curves with parabolic structures”, Math. Ann., 248 (1980), 205–239 | DOI | MR | Zbl

[14] Naeff R., The Chevalley–Weil formula, M.Sc. Thesis, University of Amsterdam, 2005

[15] Nakajima S., “On Galois module structure of the cohomology groups of an algebraic variety”, Invent. Math., 75 (1984), 1–8 | DOI | MR

[16] Nasatyr B., Steer B., “Orbifold Riemann surfaces and the Yang–Mills–Higgs equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 595–643, arXiv: alg-geom/9504015 | MR | Zbl

[17] Phillips R., Sarnak P., “The spectrum of Fermat curves”, Geom. Funct. Anal., 1 (1991), 80–146 | DOI | MR | Zbl

[18] Serre J.-P., Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer-Verlag, New York–Heidelberg, 1977 | DOI | Zbl

[19] Streit M., “Homology, Belyĭ functions and canonical curves”, Manuscripta Math., 90 (1996), 489–509 | DOI | MR | Zbl

[20] Tuba I., Wenzl H., “Representations of the braid group $B_3$ and of ${\rm SL}(2,Z)$”, Pacific J. Math., 197 (2001), 491–510, arXiv: math.RT/9912013 | DOI | MR | Zbl

[21] Tzermias P., “The group of automorphisms of the Fermat curve”, J. Number Theory, 53 (1995), 173–178 | DOI | MR | Zbl

[22] Weil A., “Über Matrizenringe auf Riemannschen Flächen und den Riemann–Rochsehen Satz”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 110–115 | DOI | MR

[23] Yui N., “On the Jacobian variety of the Fermat curve”, J. Algebra, 65 (1980), 1–35 | DOI | MR | Zbl