@article{SIGMA_2018_14_a70,
author = {Luca Candelori},
title = {The {Chevalley{\textendash}Weil} {Formula} for {Orbifold} {Curves}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a70/}
}
Luca Candelori. The Chevalley–Weil Formula for Orbifold Curves. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a70/
[1] Barraza P., Rojas A. M., “The group algebra decomposition of Fermat curves of prime degree”, Arch. Math. (Basel), 104 (2015), 145–155 | DOI | MR | Zbl
[2] Behrend K., Noohi B., “Uniformization of Deligne–Mumford curves”, J. Reine Angew. Math., 599 (2006), 111–153, arXiv: math.AG/0504309 | DOI | MR | Zbl
[3] Candelori L., Franc C., “Vector-valued modular forms and the modular orbifold of elliptic curves”, Int. J. Number Theory, 13 (2017), 39–63, arXiv: 1506.09192 | DOI | MR | Zbl
[4] Candelori L., Franc C., Kopp G. S., “Generating weights for the Weil representation attached to an even order cyclic quadratic module”, J. Number Theory, 180 (2017), 474–497, arXiv: 1606.07844 | DOI | MR | Zbl
[5] Candelori L., Hartland T., Marks C., Yépez D., “Indecomposable vector-valued modular forms and periods of modular curves”, Res. Number Theory, 4 (2018), 17, 24 pp., arXiv: 1707.01693 | DOI | MR
[6] Chevalley C., Weil A., Hecke E., “Über das Verhalten der Integrale 1. Gattung bei Automorphismen des Funktionenkörpers”, Abh. Math. Sem. Univ. Hamburg, 10 (1934), 358–361 | DOI | MR
[7] Furuta M., Steer B., “Seifert fibred homology $3$-spheres and the Yang–Mills equations on Riemann surfaces with marked points”, Adv. Math., 96 (1992), 38–102 | DOI | MR | Zbl
[8] Kani E., “The Galois-module structure of the space of holomorphic differentials of a curve”, J. Reine Angew. Math., 367 (1986), 187–206 | DOI | MR | Zbl
[9] Karpilovsky G., Group representations, v. 3, North-Holland Mathematics Studies, 180, North-Holland Publishing Co., Amsterdam, 1994 | MR | Zbl
[10] Lang S., Introduction to algebraic and abelian functions, Graduate Texts in Mathematics, 89, 2nd ed., Springer-Verlag, New York–Berlin, 1982 | DOI | Zbl
[11] Le Bruyn L., “Dense families of $B_3$-representations and braid reversion”, J. Pure Appl. Algebra, 215 (2011), 1003–1014 | DOI | MR | Zbl
[12] Mason G., “2-dimensional vector-valued modular forms”, Ramanujan J., 17 (2008), 405–427 | DOI | MR | Zbl
[13] Mehta V. B., Seshadri C. S., “Moduli of vector bundles on curves with parabolic structures”, Math. Ann., 248 (1980), 205–239 | DOI | MR | Zbl
[14] Naeff R., The Chevalley–Weil formula, M.Sc. Thesis, University of Amsterdam, 2005
[15] Nakajima S., “On Galois module structure of the cohomology groups of an algebraic variety”, Invent. Math., 75 (1984), 1–8 | DOI | MR
[16] Nasatyr B., Steer B., “Orbifold Riemann surfaces and the Yang–Mills–Higgs equations”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 595–643, arXiv: alg-geom/9504015 | MR | Zbl
[17] Phillips R., Sarnak P., “The spectrum of Fermat curves”, Geom. Funct. Anal., 1 (1991), 80–146 | DOI | MR | Zbl
[18] Serre J.-P., Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer-Verlag, New York–Heidelberg, 1977 | DOI | Zbl
[19] Streit M., “Homology, Belyĭ functions and canonical curves”, Manuscripta Math., 90 (1996), 489–509 | DOI | MR | Zbl
[20] Tuba I., Wenzl H., “Representations of the braid group $B_3$ and of ${\rm SL}(2,Z)$”, Pacific J. Math., 197 (2001), 491–510, arXiv: math.RT/9912013 | DOI | MR | Zbl
[21] Tzermias P., “The group of automorphisms of the Fermat curve”, J. Number Theory, 53 (1995), 173–178 | DOI | MR | Zbl
[22] Weil A., “Über Matrizenringe auf Riemannschen Flächen und den Riemann–Rochsehen Satz”, Abh. Math. Sem. Univ. Hamburg, 11 (1935), 110–115 | DOI | MR
[23] Yui N., “On the Jacobian variety of the Fermat curve”, J. Algebra, 65 (1980), 1–35 | DOI | MR | Zbl