@article{SIGMA_2018_14_a66,
author = {Atsuo Kuniba},
title = {Tetrahedron {Equation} and {Quantum} $R$ {Matrices} for $q${-Oscillator} {Representations} {Mixing} {Particles} and {Holes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a66/}
}
TY - JOUR AU - Atsuo Kuniba TI - Tetrahedron Equation and Quantum $R$ Matrices for $q$-Oscillator Representations Mixing Particles and Holes JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a66/ LA - en ID - SIGMA_2018_14_a66 ER -
%0 Journal Article %A Atsuo Kuniba %T Tetrahedron Equation and Quantum $R$ Matrices for $q$-Oscillator Representations Mixing Particles and Holes %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a66/ %G en %F SIGMA_2018_14_a66
Atsuo Kuniba. Tetrahedron Equation and Quantum $R$ Matrices for $q$-Oscillator Representations Mixing Particles and Holes. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a66/
[1] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl
[2] Bazhanov V. V., Mangazeev V. V., Sergeev S. M., “Quantum geometry of 3-dimensional lattices”, J. Stat. Mech. Theory Exp., 2008 (2008), P07004, 27 pp., arXiv: 0801.0129 | DOI | MR
[3] Bazhanov V. V., Sergeev S. M., “Zamolodchikov's tetrahedron equation and hidden structure of quantum groups”, J. Phys. A: Math. Gen., 39 (2006), 3295–3310, arXiv: hep-th/0509181 | DOI | MR | Zbl
[4] Drinfel'd V. G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[5] Hayashi T., “$q$-analogues of Clifford and Weyl algebras – spinor and oscillator representations of quantum enveloping algebras”, Comm. Math. Phys., 127 (1990), 129–144 | DOI | MR
[6] Jimbo M., “A $q$-difference analogue of $U({\mathfrak g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl
[7] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl
[8] Kapranov M. M., Voevodsky V. A., “$2$-categories and Zamolodchikov tetrahedra equations”, Algebraic Groups and their Generalizations: Quantum and Infinite-Dimensional Methods (University Park, PA, 1991), Proc. Sympos. Pure Math., 56, Amer. Math. Soc., Providence, RI, 1994, 177–259 | DOI | MR | Zbl
[9] Kashaev R. M., Volkov A. Yu., “From the tetrahedron equation to universal $R$-matrices”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 79–89, arXiv: math.QA/9812017 | DOI | MR | Zbl
[10] Kuniba A., “Combinatorial Yang–Baxter maps arising from tetrahedron equation”, Theoret. and Math. Phys., 189 (2016), 1472–1485, arXiv: 1509.02245 | DOI | MR | Zbl
[11] Kuniba A., Okado M., “Tetrahedron and 3D reflection equations from quantized algebra of functions”, J. Phys. A: Math. Theor., 45 (2012), 465206, 27 pp., arXiv: 1208.1586 | DOI | MR | Zbl
[12] Kuniba A., Okado M., “Tetrahedron equation and quantum $R$ matrices for $q$-oscillator representations of $U_q\big(A^{(2)}_{2n}\big)$, $U_q\big(C^{(1)}_n\big)$ and $U_q\big(D^{(2)}_{n+1}\big)$”, Comm. Math. Phys., 334 (2015), 1219–1244, arXiv: 1311.4258 | DOI | MR | Zbl
[13] Kuniba A., Okado M., Sergeev S., “Tetrahedron equation and generalized quantum groups”, J. Phys. A: Math. Theor., 48 (2015), 304001, 38 pp., arXiv: 1503.08536 | DOI | MR
[14] Kuniba A., Okado M., Sergeev S., “Tetrahedron equation and quantum $R$ matrices for modular double of $U_q\big(D^{(2)}_{n+1}\big)$, $U_q \big(A^{(2)}_{2n}\big)$ and $U_q\big(C^{(1)}_n\big)$”, Lett. Math. Phys., 105 (2015), 447–461, arXiv: 1409.1986 | DOI | MR | Zbl
[15] Kuniba A., Okado M., Yamada Y., “Box-ball system with reflecting end”, J. Nonlinear Math. Phys., 12 (2005), 475–507, arXiv: nlin.SI/0411044 | DOI | MR | Zbl
[16] Kuniba A., Pasquier V., “Matrix product solutions to the reflection equation from three dimensional integrability”, J. Phys. A: Math. Theor., 51 (2018), 255204, 26 pp., arXiv: 1802.09164 | DOI
[17] Kuniba A., Sergeev S., “Tetrahedron equation and quantum $R$ matrices for spin representations of $B^{(1)}_n$, $D^{(1)}_n$ and $D^{(2)}_{n+1}$”, Comm. Math. Phys., 324 (2013), 695–713, arXiv: 1203.6436 | DOI | MR | Zbl
[18] Sergeev S. M., “Two-dimensional $R$-matrices – descendants of three-dimensional $R$-matrices”, Modern Phys. Lett. A, 12 (1997), 1393–1410 | DOI | MR | Zbl
[19] Sergeev S. M., “Supertetrahedra and superalgebras”, J. Math. Phys., 50 (2009), 083519, 21 pp. | DOI | MR | Zbl
[20] Zamolodchikov A. B., “Tetrahedra equations and integrable systems in three-dimensional space”, Soviet Phys. JETP, 52 (1980), 325–336 | MR