On the Coprimeness Property of Discrete Systems without the Irreducibility Condition
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we investigate the coprimeness properties of one and two-dimensional discrete equations, in a situation where the equations are decomposable into several factors of polynomials. After experimenting on a simple equation, we shall focus on some higher power extensions of the Somos-4 equation and the (1-dimensional) discrete Toda equation. Our previous results are that all of the equations satisfy the irreducibility and the coprimeness properties if the r.h.s. is not factorizable. In this paper we shall prove that the coprimeness property still holds for all of these equations even if the r.h.s. is factorizable, although the irreducibility property is no longer satisfied.
Keywords: integrability detector; coprimeness; singularity confinement; discrete Toda equation.
@article{SIGMA_2018_14_a64,
     author = {Masataka Kanki and Takafumi Mase and Tetsuji Tokihiro},
     title = {On the {Coprimeness} {Property} of {Discrete} {Systems} without the {Irreducibility} {Condition}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a64/}
}
TY  - JOUR
AU  - Masataka Kanki
AU  - Takafumi Mase
AU  - Tetsuji Tokihiro
TI  - On the Coprimeness Property of Discrete Systems without the Irreducibility Condition
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a64/
LA  - en
ID  - SIGMA_2018_14_a64
ER  - 
%0 Journal Article
%A Masataka Kanki
%A Takafumi Mase
%A Tetsuji Tokihiro
%T On the Coprimeness Property of Discrete Systems without the Irreducibility Condition
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a64/
%G en
%F SIGMA_2018_14_a64
Masataka Kanki; Takafumi Mase; Tetsuji Tokihiro. On the Coprimeness Property of Discrete Systems without the Irreducibility Condition. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a64/

[1] Bellon M. P., Viallet C.-M., “Algebraic entropy”, Comm. Math. Phys., 204 (1999), 425–437, arXiv: chao-dyn/9805006 | DOI | MR | Zbl

[2] Beukers F., “On a sequence of polynomials”, J. Pure Appl. Algebra, 117/118 (1997), 97–103 | DOI | MR | Zbl

[3] Bruschi M., Ragnisco O., Santini P. M., Tu G. Z., “Integrable symplectic maps”, Phys. D, 49 (1991), 273–294 | DOI | MR | Zbl

[4] Demskoi D. K., Viallet C.-M., “Algebraic entropy for semi-discrete equations”, J. Phys. A: Math. Theor., 45 (2012), 352001, 10 pp., arXiv: 1206.1214 | DOI | MR | Zbl

[5] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. in Appl. Math., 28 (2002), 119–144, arXiv: math.CO/0104241 | DOI | MR | Zbl

[6] Galashin P., Pylyavskyy P., $R$-systems, arXiv: 1709.00578

[7] Gale D., “The strange and surprising saga of the Somos sequences”, Math. Intelligencer, 13 (1991), 40–42 | DOI | MR

[8] Glick M., “The Devron property”, J. Geom. Phys., 87 (2015), 161–189, arXiv: 1312.6881 | DOI | MR | Zbl

[9] Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the Painlevé property?, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl

[10] Hamad K., Hone A. N. W., van der Kamp P. H., Quispel G. R. W., “QRT maps and related Laurent systems”, Adv. in Appl. Math., 96 (2018), 216–248, arXiv: 1702.07047 | DOI | MR | Zbl

[11] Hamad K., van der Kamp P. H., “From discrete integrable equations to Laurent recurrences”, J. Difference Equ. Appl., 22 (2016), 789–816 | DOI | MR | Zbl

[12] Hietarinta J., Viallet C.-M., “Singularity confinement and chaos in discrete systems”, Phys. Rev. Lett., 81 (1998), 325–328, arXiv: solv-int/9711014 | DOI

[13] Hietarinta J., Viallet C.-M., “Searching for integrable lattice maps using factorization”, J. Phys. A: Math. Theor., 40 (2007), 12629–12643, arXiv: 0705.1903 | DOI | MR | Zbl

[14] Kamiya R., Kanki M., Mase T., Tokihiro T., “Coprimeness-preserving non-integrable extension to the two-dimensional discrete Toda lattice equation”, J. Math. Phys., 58 (2017), 012702, 12 pp., arXiv: 1610.02646 | DOI | MR | Zbl

[15] Kanki M., Mada J., Mase T., Tokihiro T., “Irreducibility and co-primeness as an integrability criterion for discrete equations”, J. Phys. A: Math. Theor., 47 (2014), 465204, 15 pp., arXiv: 1405.2229 | DOI | MR | Zbl

[16] Kanki M., Mada J., Tokihiro T., “Singularities of the discrete KdV equation and the Laurent property”, J. Phys. A: Math. Theor., 47 (2014), 065201, 12 pp., arXiv: 1311.0060 | DOI | MR | Zbl

[17] Kanki M., Mase T., Tokihiro T., “Algebraic entropy of an extended Hietarinta–Viallet equation”, J. Phys. A: Math. Theor., 48 (2015), 355202, 19 pp., arXiv: 1502.02415 | DOI | MR | Zbl

[18] Kanki M., Mase T., Tokihiro T., “Singularity confinement and chaos in two-dimensional discrete systems”, J. Phys. A: Math. Theor., 49 (2016), 23LT01, 9 pages pp., arXiv: 1512.09168 | DOI | MR | Zbl

[19] Mase T., “The Laurent phenomenon and discrete integrable systems”, The Breadth and Depth of Nonlinear Discrete Integrable Systems, RIMS Kôkyûroku Bessatsu, B41, Res. Inst. Math. Sci. (RIMS), Kyoto, 2013, 43–64 | MR

[20] Mase T., “Investigation into the role of the Laurent property in integrability”, J. Math. Phys., 57 (2016), 022703, 21 pp., arXiv: 1505.01722 | DOI | MR | Zbl

[21] Mase T., Willox R., Ramani A., Grammaticos B., “Integrable mappings and the notion of anticonfinement”, J. Phys. A: Math. Theor., 52 (2018), 265201, 11 pp., arXiv: 1511.02000 | DOI

[22] Mirimanoff D., “Sur l'équation $(x+1)^l-x^l-1=0$”, Nouv. Ann. Math., 3 (1903), 385–397 | Zbl

[23] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl

[24] Viallet C.-M., “On the algebraic structure of rational discrete dynamical systems”, J. Phys. A: Math. Theor., 48 (2015), 16FT01, 21 pp., arXiv: 1501.06384 | DOI | MR | Zbl