@article{SIGMA_2018_14_a64,
author = {Masataka Kanki and Takafumi Mase and Tetsuji Tokihiro},
title = {On the {Coprimeness} {Property} of {Discrete} {Systems} without the {Irreducibility} {Condition}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a64/}
}
TY - JOUR AU - Masataka Kanki AU - Takafumi Mase AU - Tetsuji Tokihiro TI - On the Coprimeness Property of Discrete Systems without the Irreducibility Condition JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a64/ LA - en ID - SIGMA_2018_14_a64 ER -
%0 Journal Article %A Masataka Kanki %A Takafumi Mase %A Tetsuji Tokihiro %T On the Coprimeness Property of Discrete Systems without the Irreducibility Condition %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a64/ %G en %F SIGMA_2018_14_a64
Masataka Kanki; Takafumi Mase; Tetsuji Tokihiro. On the Coprimeness Property of Discrete Systems without the Irreducibility Condition. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a64/
[1] Bellon M. P., Viallet C.-M., “Algebraic entropy”, Comm. Math. Phys., 204 (1999), 425–437, arXiv: chao-dyn/9805006 | DOI | MR | Zbl
[2] Beukers F., “On a sequence of polynomials”, J. Pure Appl. Algebra, 117/118 (1997), 97–103 | DOI | MR | Zbl
[3] Bruschi M., Ragnisco O., Santini P. M., Tu G. Z., “Integrable symplectic maps”, Phys. D, 49 (1991), 273–294 | DOI | MR | Zbl
[4] Demskoi D. K., Viallet C.-M., “Algebraic entropy for semi-discrete equations”, J. Phys. A: Math. Theor., 45 (2012), 352001, 10 pp., arXiv: 1206.1214 | DOI | MR | Zbl
[5] Fomin S., Zelevinsky A., “The Laurent phenomenon”, Adv. in Appl. Math., 28 (2002), 119–144, arXiv: math.CO/0104241 | DOI | MR | Zbl
[6] Galashin P., Pylyavskyy P., $R$-systems, arXiv: 1709.00578
[7] Gale D., “The strange and surprising saga of the Somos sequences”, Math. Intelligencer, 13 (1991), 40–42 | DOI | MR
[8] Glick M., “The Devron property”, J. Geom. Phys., 87 (2015), 161–189, arXiv: 1312.6881 | DOI | MR | Zbl
[9] Grammaticos B., Ramani A., Papageorgiou V., Do integrable mappings have the Painlevé property?, Phys. Rev. Lett., 67 (1991), 1825–1828 | DOI | MR | Zbl
[10] Hamad K., Hone A. N. W., van der Kamp P. H., Quispel G. R. W., “QRT maps and related Laurent systems”, Adv. in Appl. Math., 96 (2018), 216–248, arXiv: 1702.07047 | DOI | MR | Zbl
[11] Hamad K., van der Kamp P. H., “From discrete integrable equations to Laurent recurrences”, J. Difference Equ. Appl., 22 (2016), 789–816 | DOI | MR | Zbl
[12] Hietarinta J., Viallet C.-M., “Singularity confinement and chaos in discrete systems”, Phys. Rev. Lett., 81 (1998), 325–328, arXiv: solv-int/9711014 | DOI
[13] Hietarinta J., Viallet C.-M., “Searching for integrable lattice maps using factorization”, J. Phys. A: Math. Theor., 40 (2007), 12629–12643, arXiv: 0705.1903 | DOI | MR | Zbl
[14] Kamiya R., Kanki M., Mase T., Tokihiro T., “Coprimeness-preserving non-integrable extension to the two-dimensional discrete Toda lattice equation”, J. Math. Phys., 58 (2017), 012702, 12 pp., arXiv: 1610.02646 | DOI | MR | Zbl
[15] Kanki M., Mada J., Mase T., Tokihiro T., “Irreducibility and co-primeness as an integrability criterion for discrete equations”, J. Phys. A: Math. Theor., 47 (2014), 465204, 15 pp., arXiv: 1405.2229 | DOI | MR | Zbl
[16] Kanki M., Mada J., Tokihiro T., “Singularities of the discrete KdV equation and the Laurent property”, J. Phys. A: Math. Theor., 47 (2014), 065201, 12 pp., arXiv: 1311.0060 | DOI | MR | Zbl
[17] Kanki M., Mase T., Tokihiro T., “Algebraic entropy of an extended Hietarinta–Viallet equation”, J. Phys. A: Math. Theor., 48 (2015), 355202, 19 pp., arXiv: 1502.02415 | DOI | MR | Zbl
[18] Kanki M., Mase T., Tokihiro T., “Singularity confinement and chaos in two-dimensional discrete systems”, J. Phys. A: Math. Theor., 49 (2016), 23LT01, 9 pages pp., arXiv: 1512.09168 | DOI | MR | Zbl
[19] Mase T., “The Laurent phenomenon and discrete integrable systems”, The Breadth and Depth of Nonlinear Discrete Integrable Systems, RIMS Kôkyûroku Bessatsu, B41, Res. Inst. Math. Sci. (RIMS), Kyoto, 2013, 43–64 | MR
[20] Mase T., “Investigation into the role of the Laurent property in integrability”, J. Math. Phys., 57 (2016), 022703, 21 pp., arXiv: 1505.01722 | DOI | MR | Zbl
[21] Mase T., Willox R., Ramani A., Grammaticos B., “Integrable mappings and the notion of anticonfinement”, J. Phys. A: Math. Theor., 52 (2018), 265201, 11 pp., arXiv: 1511.02000 | DOI
[22] Mirimanoff D., “Sur l'équation $(x+1)^l-x^l-1=0$”, Nouv. Ann. Math., 3 (1903), 385–397 | Zbl
[23] Ramani A., Grammaticos B., Hietarinta J., “Discrete versions of the Painlevé equations”, Phys. Rev. Lett., 67 (1991), 1829–1832 | DOI | MR | Zbl
[24] Viallet C.-M., “On the algebraic structure of rational discrete dynamical systems”, J. Phys. A: Math. Theor., 48 (2015), 16FT01, 21 pp., arXiv: 1501.06384 | DOI | MR | Zbl