@article{SIGMA_2018_14_a63,
author = {Jules Lamers},
title = {The {Functional} {Method} for the {Domain-Wall} {Partition} {Function}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a63/}
}
Jules Lamers. The Functional Method for the Domain-Wall Partition Function. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a63/
[1] Baxter R. J., “Perimeter Bethe ansatz”, J. Phys. A: Math. Gen., 20 (1987), 2557–2567 | DOI | MR
[2] Bogoliubov N. M., Pronko A. G., Zvonarev M. B., “Boundary correlation functions of the six-vertex model”, J. Phys. A: Math. Gen., 35 (2002), 5525–5541, arXiv: math-ph/0203025 | DOI | MR | Zbl
[3] Cherednik I. V., “Factorizing particles on a half line, and root systems”, Theoret. and Math. Phys., 61 (1984), 977–983 | DOI | MR | Zbl
[4] Filali G., Dynamical reflection algebra and associated boundary integrable models, Ph.D. Thesis, Université de Cergy Pontoise, 2011 https://tel.archives-ouvertes.fr/tel-00664076
[5] Filali G., “Elliptic dynamical reflection algebra and partition function of SOS model with reflecting end”, J. Geom. Phys., 61 (2011), 1789–1796, arXiv: 1012.0516 | DOI | MR | Zbl
[6] Filali G., Kitanine N., “The partition function of the trigonometric SOS model with a reflecting end”, J. Stat. Mech. Theory Exp., 2010 (2010), L06001, 11 pp. | DOI | MR
[7] Frassek R., “Boundary perimeter Bethe ansatz”, J. Phys. A: Math. Theor., 50 (2017), 265202, 19 pp., arXiv: 1703.10842 | DOI | MR | Zbl
[8] Galleas W., “Functional relations for the six-vertex model with domain wall boundary conditions”, J. Stat. Mech. Theory Exp., 2010 (2010), P06008, 15 pp., arXiv: 1002.1623 | DOI
[9] Galleas W., “A new representation for the partition function of the six-vertex model with domain wall boundaries”, J. Stat. Mech. Theory Exp., 2011 (2011), P01013, 12 pp., arXiv: 1010.5059 | DOI | MR
[10] Galleas W., “Multiple integral representation for the trigonometric SOS model with domain wall boundaries”, Nuclear Phys. B, 858 (2012), 117–141, arXiv: 1111.6683 | DOI | MR | Zbl
[11] Galleas W., “Functional relations and the Yang–Baxter algebra”, J. Phys. Conf. Ser., 474 (2013), 012020, 19 pp., arXiv: 1312.6816 | DOI
[12] Galleas W., “Refined functional relations for the elliptic SOS model”, Nuclear Phys. B, 867 (2013), 855–871, arXiv: 1207.5283 | DOI | MR | Zbl
[13] Galleas W., “Scalar product of Bethe vectors from functional equations”, Comm. Math. Phys., 329 (2014), 141–167, arXiv: 1211.7342 | DOI | MR | Zbl
[14] Galleas W., “Off-shell scalar products for the $XXZ$ spin chain with open boundaries”, Nuclear Phys. B, 893 (2015), 346–375, arXiv: 1412.5389 | DOI | MR | Zbl
[15] Galleas W., “Elliptic solid-on-solid model's partition function as a single determinant”, Phys. Rev. E, 94 (2016), 010102, 5 pp., arXiv: 1604.01223 | DOI
[16] Galleas W., “New differential equations in the six-vertex model”, J. Stat. Mech. Theory Exp., 2016 (2016), 033106, 13 pp., arXiv: 1508.04690 | DOI | MR
[17] Galleas W., On the elliptic $\mathfrak{gl}_2$ solid-on-solid model: functional relations and determinants, arXiv: 1606.06144
[18] Galleas W., “Continuous representations of scalar products of Bethe vectors”, J. Math. Phys., 58 (2017), 083504, 15 pp., arXiv: 1607.08524 | DOI | MR | Zbl
[19] Galleas W., Six-vertex model and non-linear differential equations I. Spectral problem, arXiv: 1705.03408
[20] Galleas W., Lamers J., “Reflection algebra and functional equations”, Nuclear Phys. B, 886 (2014), 1003–1028, arXiv: 1405.4281 | DOI | MR | Zbl
[21] Garbali A., “The domain wall partition function for the Izergin–Korepin nineteen-vertex model at a root of unity”, J. Stat. Mech. Theory Exp., 2016 (2016), 033112, 19 pp., arXiv: 1411.2903 | DOI | MR
[22] Göhmann F., Korepin V. E., “Solution of the quantum inverse problem”, J. Phys. A: Math. Gen., 33 (2000), 1199–1220 | DOI | MR | Zbl
[23] Izergin A. G., “Partition function of a six-vertex model in a finite volume”, Sov. Phys. Dokl., 32 (1987), 878–879 | MR | Zbl
[24] Izergin A. G., Coker D. A., Korepin V. E., “Determinant formula for the six-vertex model”, J. Phys. A: Math. Gen., 25 (1992), 4315–4334 | DOI | MR | Zbl
[25] Kitanine N., Kozlowski K. K., Maillet J. M., Niccoli G., Slavnov N. A., Terras V., “Correlation functions of the open $XXZ$ chain. I”, J. Stat. Mech. Theory Exp., 2007 (2007), P10009, 37 pp., arXiv: 0707.1995 | DOI | MR
[26] Kitanine N., Maillet J. M., Terras V., “Form factors of the $XXZ$ Heisenberg spin-$\frac 12$ finite chain”, Nuclear Phys. B, 554 (1999), 647–678, arXiv: math-ph/9807020 | DOI | MR | Zbl
[27] Kitanine N., Maillet J. M., Terras V., “Correlation functions of the $XXZ$ Heisenberg spin-${1\over2}$ chain in a magnetic field”, Nuclear Phys. B, 567 (2000), 554–582, arXiv: math-ph/9907019 | DOI | MR | Zbl
[28] Korepin V., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[29] Korepin V., Zinn-Justin P., “Thermodynamic limit of the six-vertex model with domain wall boundary conditions”, J. Phys. A: Math. Gen., 33 (2000), 7053–7066, arXiv: cond-mat/0004250 | DOI | MR | Zbl
[30] Lamers J., “A pedagogical introduction to quantum integrability, with a view towards theoretical high-energy physics”, PoS (Modave, 2014), PoS Proc. Sci., 2014, 001, 70 pp., arXiv: 1501.06805
[31] Lamers J., “Integral formula for elliptic SOS models with domain walls and a reflecting end”, Nuclear Phys. B, 901 (2015), 556–583, arXiv: 1510.00342 | DOI | MR | Zbl
[32] Lamers J., On elliptic quantum Integrability: vertex models, solid-on-solid models and spin chains, Utrecht University, 2016 https://dspace.library.uu.nl/handle/1874/333998
[33] Lieb E. H., “Exact solution of the $F$ model of an antiferroelectric”, Phys. Rev. Lett., 18 (1967), 1046–1048 | DOI
[34] Lieb E. H., “Exact solution of the two-dimensional Slater KDP model of a ferroelectric”, Phys. Rev. Lett., 19 (1967), 108–110 | DOI
[35] Lieb E. H., “Residual entropy of square ice”, Phys. Rev., 162 (1967), 162–172 | DOI
[36] Maillet J. M., Terras V., “On the quantum inverse scattering problem”, Nuclear Phys. B, 575 (2000), 627–644, arXiv: hep-th/9911030 | DOI | MR | Zbl
[37] Pakuliak S., Rubtsov V., Silantyev A., “The SOS model partition function and the elliptic weight functions”, J. Phys. A: Math. Theor., 41 (2008), 295204, 20 pp., arXiv: 0802.0195 | DOI | MR | Zbl
[38] Rosengren H., “An Izergin–Korepin-type identity for the 8VSOS model, with applications to alternating sign matrices”, Adv. in Appl. Math., 43 (2009), 137–155, arXiv: 0801.1229 | DOI | MR | Zbl
[39] Sklyanin E. K., “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl
[40] Slavnov N. A., “Calculation of scalar products of wave functions and form-factors in the framework of the algebraic Bethe ansatz”, Theoret. and Math. Phys., 79 (1989), 502–508 | DOI | MR
[41] Sutherland B., “Exact solution of a two-dimensional model for hydrogen-bonded crystals”, Phys. Rev. Lett., 19 (1967), 103–104 | DOI
[42] Tarasov V., Varchenko A., Geometry of $q$-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque, 246, 1997, vi+135 pp., arXiv: q-alg/9703044 | MR | Zbl
[43] Tsuchiya O., “Determinant formula for the six-vertex model with reflecting end”, J. Math. Phys., 39 (1998), 5946–5951, arXiv: solv-int/9804010 | DOI | MR | Zbl
[44] Wang Y. S., “The scalar products and the norm of Bethe eigenstates for the boundary $XXX$ Heisenberg spin-1/2 finite chain”, Nuclear Phys. B, 622 (2002), 633–649 | DOI | MR | Zbl
[45] Zinn-Justin P., “Six-vertex model with domain wall boundary conditions and one-matrix model”, Phys. Rev. E, 62 (2000), 3411–3418, arXiv: math-ph/0005008 | DOI | MR