@article{SIGMA_2018_14_a62,
author = {Emil Horozov},
title = {$d${-Orthogonal} {Analogs} of {Classical} {Orthogonal} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a62/}
}
Emil Horozov. $d$-Orthogonal Analogs of Classical Orthogonal Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a62/
[1] Abramowitz M., Stegun I. A., Pocketbook of mathematical functions, Verlag Harri Deutsch, 1984 | MR | Zbl
[2] Akemann G., Ipsen J. R., Kieburg M., “Products of rectangular random matrices: singular values and progressive scattering”, Phys. Rev. E, 88 (2013), 052118, 13 pp., arXiv: 1307.7560 | DOI
[3] Alexandrov A., “Open intersection numbers, Kontsevich–Penner model and cut-and-join operators”, J. High Energy Phys., 2015:8 (2015), 028, 25 pp., arXiv: 1412.3772 | DOI | MR
[4] Alexandrov A., Cut-and-join description of generalized Brezin–Gross–Witten model, arXiv: 1608.01627
[5] Aptekarev A. I., “Multiple orthogonal polynomials”, J. Comput. Appl. Math., 99 (1998), 423–447 | DOI | MR | Zbl
[6] Aptekarev A. I., Bleher P. M., Kuijlaars A. B. J., “Large $n$ limit of Gaussian random matrices with external source. II”, Comm. Math. Phys., 259 (2005), 367–389, arXiv: math-ph/0408041 | DOI | MR | Zbl
[7] Aptekarev A. I., Branquinho A., Van Assche W., “Multiple orthogonal polynomials for classical weights”, Trans. Amer. Math. Soc., 355 (2003), 3887–3914 | DOI | MR | Zbl
[8] Aptekarev A. I., Kuijlaars A. B. J., “Hermite–Padé approximations and ensembles of multiple orthogonal polynomials”, Russian Math. Surveys, 66 (2011), 1133–1199 | DOI | MR | Zbl
[9] Araujo O., Estrada M., Morales D. A., Rada J., “The higher-order matching polynomial of a graph”, Int. J. Math. Math. Sci., 2005, 1565–1576 | DOI | MR | Zbl
[10] Bakalov B., Horozov E., Yakimov M., “General methods for constructing bispectral operators”, Phys. Lett. A, 222 (1996), 59–66, arXiv: q-alg/9605011 | DOI | MR | Zbl
[11] Bakalov B., Horozov E., Yakimov M., “Bispectral algebras of commuting ordinary differential operators”, Comm. Math. Phys., 190 (1997), 331–373, arXiv: q-alg/9602011 | DOI | MR | Zbl
[12] Ball K., Rivoal T., “Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs”, Invent. Math., 146 (2001), 193–207 | DOI | MR | Zbl
[13] Ben Cheikh Y., “On obtaining dual sequences via quasi-monomiality”, Georgian Math. J., 9 (2002), 413–422 | DOI | MR | Zbl
[14] Ben Cheikh Y., Ben Romdhane N., “On $d$-symmetric classical $d$-orthogonal polynomials”, J. Comput. Appl. Math., 236 (2011), 85–93 | DOI | MR | Zbl
[15] Ben Cheikh Y., Douak K., “A generalized hypergeometric $d$-orthogonal polynomial set”, C. R. Acad. Sci. Paris Sér. I Math., 331 (2000), 349–354 | DOI | MR | Zbl
[16] Ben Cheikh Y., Zaghouani A., “Some discrete $d$-orthogonal polynomial sets”, J. Comput. Appl. Math., 156 (2003), 253–263 | DOI | MR | Zbl
[17] Beukers F., “Padé-approximations in number theory”, Padé Approximation and its Applications (Amsterdam, 1980), Lecture Notes in Math., 888, Springer, Berlin–New York, 1981, 90–99 | DOI | MR
[18] Bleher P., Delvaux S., Kuijlaars A. B. J., “Random matrix model with external source and a constrained vector equilibrium problem”, Comm. Pure Appl. Math., 64 (2011), 116–160, arXiv: 1001.1238 | DOI | MR | Zbl
[19] Bochner S., “Über Sturm–Liouvillesche Polynomsysteme”, Math. Z., 29 (1929), 730–736 | DOI | MR | Zbl
[20] Borodin A., “Biorthogonal ensembles”, Nuclear Phys. B, 536 (1999), 704–732, arXiv: math.CA/9804027 | DOI | MR | Zbl
[21] Chang J.-H., “The Gould–Hopper polynomials in the Novikov–Veselov equation”, J. Math. Phys., 52 (2011), 092703, 15 pp., arXiv: 1011.1614 | DOI | MR | Zbl
[22] Chartrand G., Zhang P., Chromatic graph theory, Discrete Mathematics and its Applications (Boca Raton), CRC Press, Boca Raton, FL, 2009 | MR | Zbl
[23] Craven T., Csordas G., “Jensen polynomials and the Turán and Laguerre inequalities”, Pacific J. Math., 136 (1989), 241–260 | DOI | MR | Zbl
[24] Dattoli G., Lorenzutta S., Maino G., Torre A., Cesarano C., “Generalized Hermite polynomials and super-Gaussian forms”, J. Math. Anal. Appl., 203 (1996), 597–609 | DOI | MR | Zbl
[25] de Bruin M. G., “Simultaneous Padé approximation and orthogonality”, Orthogonal Polynomials and Applications (Bar-le-Duc, 1984), Lecture Notes in Math., 1171, Springer, Berlin, 1985, 74–83 | DOI | MR
[26] Delerue P., “Sur le calcul symbolique à $n$ variables et les fonctions hyperbesséliennes. II Fonctions hyperbesséliennes”, Ann. Soc. Sci. Bruxelles. Sér. I, 67 (1953), 229–274 | MR | Zbl
[27] Diestel R., Graph theory, Graduate Texts in Mathematics, 173, 4th ed., Springer, Heidelberg, 2010 | DOI | MR | Zbl
[28] Dominici D., “Mehler–Heine type formulas for Charlier and Meixner polynomials”, Ramanujan J., 39 (2016), 271–289, arXiv: 1406.6193 | DOI | MR | Zbl
[29] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Comm. Math. Phys., 103 (1986), 177–240 | DOI | MR | Zbl
[30] Farrell E. J., “An introduction to matching polynomials”, J. Combin. Theory Ser. B, 27 (1979), 75–86 | DOI | MR | Zbl
[31] Forrester P. J., Wang D., “Muttalib–Borodin ensembles in random matrix theory – realisations and correlation functions”, Electron. J. Probab., 22 (2017), 54, 43 pp., arXiv: 1502.07147 | DOI | MR | Zbl
[32] Genest V. X., Vinet L., Zhedanov A., “$d$-orthogonal polynomials and $\mathfrak{su}(2)$”, J. Math. Anal. Appl., 390 (2012), 472–487, arXiv: 1110.1902 | DOI | MR | Zbl
[33] Gould H. W., Hopper A. T., “Operational formulas connected with two generalizations of Hermite polynomials”, Duke Math. J., 29 (1962), 51–63 | DOI | MR | Zbl
[34] Gutman I., “Polynomials in graph theory”, Complexity in chemistry. Introduction and fundamentals, Mathematical Chemistry, 7, eds. D. Bonchev, D.H. Rouvray, Taylor Francis, London, 2003, 133–176 | MR
[35] Heine E., Handbuch der Kugelfunctionen, Thesaurus Mathematicae, 1, Zweite umgearbeitete und vermehrte Auflage, Georg Reimer, Berlin, 1861
[36] Horozov E., “Automorphisms of algebras and Bochner's property for vector orthogonal polynomials”, SIGMA, 12 (2016), 050, 14 pp., arXiv: 1512.03898 | DOI | MR | Zbl
[37] Horozov E., “Automorphisms of algebras and Bochner's property for discrete vector orthogonal polynomials”, Ann. l'Unuversité de Sofia “St. Kliment Okhridski”, 104 (2017), 23–38, arXiv: 1602.04343
[38] Horozov E., “Vector orthogonal polynomials with Bochner's property”, Constr. Approx. (to appear) , arXiv: 1609.06151 | DOI
[39] Hosoya H., “Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons”, Bull. Chem. Soc. Jpn., 44 (1971), 2332–2339 | DOI
[40] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2009 | MR | Zbl
[41] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[42] Konhauser J. D. E., “Biorthogonal polynomials suggested by the Laguerre polynomials”, Pacific J. Math., 21 (1967), 303–314 | DOI | MR | Zbl
[43] Kontsevich M., “Intersection theory on the moduli space of curves and the matrix Airy function”, Comm. Math. Phys., 147 (1992), 1–23 | DOI | MR | Zbl
[44] Kuijlaars A. B. J., “Multiple orthogonal polynomials in random matrix theory”, Proceedings of the International Congress of Mathematicians, v. III, Hindustan Book Agency, New Delhi, 2010, 1417–1432, arXiv: 1004.0846 | MR
[45] Kuijlaars A. B. J., Zhang L., “Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits”, Comm. Math. Phys., 332 (2014), 759–781, arXiv: 1308.1003 | DOI | MR | Zbl
[46] Lin S.-D., Chao Y.-S., Srivastava H. M., “Some families of hypergeometric polynomials and associated integral representations”, J. Math. Anal. Appl., 294 (2004), 399–411 | DOI | MR | Zbl
[47] Maroni P., “Two-dimensional orthogonal polynomials, their associated sets and the co-recursive sets”, Numer. Algorithms, 3 (1992), 299–311 | DOI | MR | Zbl
[48] Mehler F. G., “Ueber die Vertheilung der statischen Elektricität in einem von zwei Kugelkalotten begrenzten Körper”, J. Reine Angew. Math., 68 (1868), 134–150 | DOI | MR | Zbl
[49] Mironov A., Morozov A., Semenoff G. W., “Unitary matrix integrals in the framework of the generalized Kontsevich model”, Internat. J. Modern Phys. A, 11 (1996), 5031–5080, arXiv: hep-th/9404005 | DOI | MR | Zbl
[50] Muttalib K. A., “Random matrix models with additional interactions”, J. Phys. A: Math. Gen., 28 (1995), L159–L164 | DOI | MR
[51] Olver F. W.J., Lozier D. W., Boisvert R. F., Clark C. W. (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010 http://dlmf.nist.gov | MR
[52] Randić M., Morales D. A., Araujo O., “Higher-order Fibonacci numbers”, J. Math. Chem., 20 (1996), 79–94 | DOI | MR | Zbl
[53] Sorokin V. N., “Hermite–Padé approximants for Nikishin systems and the irrationality of $\zeta(3)$”, Russian Math. Surveys, 49 (1994), 176–177 | DOI | MR | Zbl
[54] Spencer L. V., Fano U., “Penetration and diffusion of $X$-rays. Calculation of spatial distributions by polynomial expansion”, J. Research Nat. Bureau Stand., 44 (1951), 446–461 | DOI
[55] Srivastava H. M., “Generating functions for Jacobi and Laguerre polynomials”, Proc. Amer. Math. Soc., 23 (1969), 590–595 | DOI | MR | Zbl
[56] Srivastava H. M., Manocha H. L., A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press, New York, 1984 | MR | Zbl
[57] Takata T., “Asymptotic formulae of Mehler-Heine-type for certain classical polyorthogonal polynomials”, J. Approx. Theory, 135 (2005), 160–175 | DOI | MR | Zbl
[58] Toscano L., “Una generalizzazione dei polinomi di Laguerre”, Giorn. Mat. Battaglini (5), 4 (1956), 123–138 | MR | Zbl
[59] Van Assche W., “Mehler–Heine asymptotics for multiple orthogonal polynomials”, Proc. Amer. Math. Soc., 145 (2017), 303–314, arXiv: 1408.6140 | DOI | MR | Zbl
[60] Van Assche W., Coussement E., “Some classical multiple orthogonal polynomials”, J. Comput. Appl. Math., 127 (2001), 317–347, arXiv: math.CA/0103131 | DOI | MR | Zbl
[61] Van Iseghem J., “Vector orthogonal relations. Vector QD-algorithm”, J. Comput. Appl. Math., 19 (1987), 141–150 | DOI | MR | Zbl
[62] Vignat C., Lévêque O., “Proof of a conjecture by Gazeau et al. using the Gould–Hopper polynomials”, J. Math. Phys., 54 (2013), 073513, 8 pp., arXiv: 1203.5418 | DOI | MR | Zbl
[63] Vinet L., Zhedanov A., “Automorphisms of the Heisenberg–Weyl algebra and $d$-orthogonal polynomials”, J. Math. Phys., 50 (2009), 033511, 19 pp. | DOI | MR | Zbl
[64] Zhang L., “Local universality in biorthogonal Laguerre ensembles”, J. Stat. Phys., 161 (2015), 688–711, arXiv: 1502.03160 | DOI | MR | Zbl