Lie Algebroid Invariants for Subgeometry
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the infinitesimal invariants of an immersed submanifold $\Sigma $ of a Klein geometry $M\cong G/H$, and in particular an invariant filtration of Lie algebroids over $\Sigma $. The invariants are derived from the logarithmic derivative of the immersion of $\Sigma $ into $M$, a complete invariant introduced in the companion article, A characterization of smooth maps into a homogeneous space. Applications of the Lie algebroid approach to subgeometry include a new interpretation of Cartan's method of moving frames and a novel proof of the fundamental theorem of hypersurfaces in Euclidean, elliptic and hyperbolic geometry.
Keywords: subgeometry; Lie algebroids; Cartan geometry; Klein geometry; differential invariants.
@article{SIGMA_2018_14_a61,
     author = {Anthony D. Blaom},
     title = {Lie {Algebroid} {Invariants} for {Subgeometry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a61/}
}
TY  - JOUR
AU  - Anthony D. Blaom
TI  - Lie Algebroid Invariants for Subgeometry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a61/
LA  - en
ID  - SIGMA_2018_14_a61
ER  - 
%0 Journal Article
%A Anthony D. Blaom
%T Lie Algebroid Invariants for Subgeometry
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a61/
%G en
%F SIGMA_2018_14_a61
Anthony D. Blaom. Lie Algebroid Invariants for Subgeometry. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a61/

[1] Armstrong S., Note on pre-Courant algebroid structures for parabolic geometries, arXiv: 0709.0919

[2] Blaom A. D., “Geometric structures as deformed infinitesimal symmetries”, Trans. Amer. Math. Soc., 358 (2006), 3651–3671, arXiv: math.DG/0404313 | DOI | MR | Zbl

[3] Blaom A. D., “Lie algebroids and Cartan's method of equivalence”, Trans. Amer. Math. Soc., 364 (2012), 3071–3135, arXiv: math.DG/0509071 | DOI | MR | Zbl

[4] Blaom A. D., “The infinitesimalization and reconstruction of locally homogeneous manifolds”, SIGMA, 9 (2013), 074, 19 pp., arXiv: 1304.7838 | DOI | MR | Zbl

[5] Blaom A. D., “Cartan connections on Lie groupoids and their integrability”, SIGMA, 12 (2016), 114, 26 pp., arXiv: 1605.04365 | DOI | MR | Zbl

[6] Blaom A. D., “Pseudogroups via pseudoactions: unifying local, global, and infinitesimal symmetry”, J. Lie Theory, 26 (2016), 535–565, arXiv: 1410.6981 | MR | Zbl

[7] Blaom A. D., A characterization of smooth maps into a homogeneous space, arXiv: 1702.02717

[8] Blaom A. D., The Lie algebroid associated with a hypersurface, arXiv: 1702.03452

[9] Burstall F. E., Calderbank D. M. J., “Submanifold geometry in generalized flag manifolds”, Rend. Circ. Mat. Palermo (2) Suppl., 72 (2004), 13–41 | MR | Zbl

[10] Burstall F. E., Calderbank D. M. J., Conformal submanifold geometry I–III, arXiv: 1006.5700

[11] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999 | MR | Zbl

[12] Čap A., Gover A. R., “Tractor calculi for parabolic geometries”, Trans. Amer. Math. Soc., 354 (2002), 1511–1548 | DOI | MR | Zbl

[13] Čap A., Slovák J., “Parabolic geometries. I Background and general theory”, Mathematical Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl

[14] Crainic M., Fernandes R. L., “Lectures on integrability of Lie brackets”, Lectures on Poisson Geometry, Geom. Topol. Monogr., 17, Geom. Topol. Publ., Coventry, 2011, 1–107, arXiv: math.DG/0611259 | MR | Zbl

[15] Dufour J.-P., Zung N. T., Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005 | DOI | MR | Zbl

[16] Fels M., Olver P. J., “Moving coframes. I A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR

[17] Fels M., Olver P. J., “Moving coframes. II Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl

[18] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[19] Olver P. J., “A survey of moving frames”, Computer Algebra and Geometric Algebra with Applications, 6th International Workshop, IWMM 2004 (Shanghai, China, May 19–21, 2004); International Workshop, GIAE 2004 (Xian, China, May 24–28, 2004), Geom. Topol. Monogr., 17, eds. H. Li, P. J. Olver, G. Sommer, Springer, Berlin–Heidelberg, 2005, 105–138 | DOI

[20] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl

[21] Xu X., “Twisted Courant algebroids and coisotropic Cartan geometries”, J. Geom. Phys., 82 (2014), 124–131, arXiv: 1206.2282 | DOI | MR | Zbl