@article{SIGMA_2018_14_a61,
author = {Anthony D. Blaom},
title = {Lie {Algebroid} {Invariants} for {Subgeometry}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a61/}
}
Anthony D. Blaom. Lie Algebroid Invariants for Subgeometry. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a61/
[1] Armstrong S., Note on pre-Courant algebroid structures for parabolic geometries, arXiv: 0709.0919
[2] Blaom A. D., “Geometric structures as deformed infinitesimal symmetries”, Trans. Amer. Math. Soc., 358 (2006), 3651–3671, arXiv: math.DG/0404313 | DOI | MR | Zbl
[3] Blaom A. D., “Lie algebroids and Cartan's method of equivalence”, Trans. Amer. Math. Soc., 364 (2012), 3071–3135, arXiv: math.DG/0509071 | DOI | MR | Zbl
[4] Blaom A. D., “The infinitesimalization and reconstruction of locally homogeneous manifolds”, SIGMA, 9 (2013), 074, 19 pp., arXiv: 1304.7838 | DOI | MR | Zbl
[5] Blaom A. D., “Cartan connections on Lie groupoids and their integrability”, SIGMA, 12 (2016), 114, 26 pp., arXiv: 1605.04365 | DOI | MR | Zbl
[6] Blaom A. D., “Pseudogroups via pseudoactions: unifying local, global, and infinitesimal symmetry”, J. Lie Theory, 26 (2016), 535–565, arXiv: 1410.6981 | MR | Zbl
[7] Blaom A. D., A characterization of smooth maps into a homogeneous space, arXiv: 1702.02717
[8] Blaom A. D., The Lie algebroid associated with a hypersurface, arXiv: 1702.03452
[9] Burstall F. E., Calderbank D. M. J., “Submanifold geometry in generalized flag manifolds”, Rend. Circ. Mat. Palermo (2) Suppl., 72 (2004), 13–41 | MR | Zbl
[10] Burstall F. E., Calderbank D. M. J., Conformal submanifold geometry I–III, arXiv: 1006.5700
[11] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999 | MR | Zbl
[12] Čap A., Gover A. R., “Tractor calculi for parabolic geometries”, Trans. Amer. Math. Soc., 354 (2002), 1511–1548 | DOI | MR | Zbl
[13] Čap A., Slovák J., “Parabolic geometries. I Background and general theory”, Mathematical Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[14] Crainic M., Fernandes R. L., “Lectures on integrability of Lie brackets”, Lectures on Poisson Geometry, Geom. Topol. Monogr., 17, Geom. Topol. Publ., Coventry, 2011, 1–107, arXiv: math.DG/0611259 | MR | Zbl
[15] Dufour J.-P., Zung N. T., Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005 | DOI | MR | Zbl
[16] Fels M., Olver P. J., “Moving coframes. I A practical algorithm”, Acta Appl. Math., 51 (1998), 161–213 | DOI | MR
[17] Fels M., Olver P. J., “Moving coframes. II Regularization and theoretical foundations”, Acta Appl. Math., 55 (1999), 127–208 | DOI | MR | Zbl
[18] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[19] Olver P. J., “A survey of moving frames”, Computer Algebra and Geometric Algebra with Applications, 6th International Workshop, IWMM 2004 (Shanghai, China, May 19–21, 2004); International Workshop, GIAE 2004 (Xian, China, May 24–28, 2004), Geom. Topol. Monogr., 17, eds. H. Li, P. J. Olver, G. Sommer, Springer, Berlin–Heidelberg, 2005, 105–138 | DOI
[20] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl
[21] Xu X., “Twisted Courant algebroids and coisotropic Cartan geometries”, J. Geom. Phys., 82 (2014), 124–131, arXiv: 1206.2282 | DOI | MR | Zbl