On $q$-Deformations of the Heun Equation
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $q$-Heun equation and its variants arise as degenerations of Ruijsenaars–van Diejen operators with one particle. We investigate local properties of these equations. In particular we characterize the variants of the $q$-Heun equation by using analysis of regular singularities. We also consider the quasi-exact solvability of the $q$-Heun equation and its variants. Namely we investigate finite-dimensional subspaces which are invariant under the action of the $q$-Heun operator or variants of the $q$-Heun operator.
Keywords: Heun equation; $q$-deformation; regular singularity; quasi-exact solvability; degeneration.
@article{SIGMA_2018_14_a60,
     author = {Kouichi Takemura},
     title = {On $q${-Deformations} of the {Heun} {Equation}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a60/}
}
TY  - JOUR
AU  - Kouichi Takemura
TI  - On $q$-Deformations of the Heun Equation
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a60/
LA  - en
ID  - SIGMA_2018_14_a60
ER  - 
%0 Journal Article
%A Kouichi Takemura
%T On $q$-Deformations of the Heun Equation
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a60/
%G en
%F SIGMA_2018_14_a60
Kouichi Takemura. On $q$-Deformations of the Heun Equation. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a60/

[1] Adams C. R., “On the linear ordinary $q$-difference equation”, Ann. of Math., 30 (1928), 195–205 | DOI | MR

[2] van Diejen J. F., “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35 (1994), 2983–3004 | DOI | MR | Zbl

[3] Finkel F., Gómez-Ullate D., González-López A., Rodríguez M. A., Zhdanov R., “New spin Calogero–Sutherland models related to $B_N$-type Dunkl operators”, Nuclear Phys. B, 613 (2001), 472–496, arXiv: hep-th/0103190 | DOI | MR | Zbl

[4] Hahn W., “On linear geometric difference equations with accessory parameters”, Funkcial. Ekvac., 14 (1971), 73–78 | MR | Zbl

[5] Jimbo M., Sakai H., “A $q$-analog of the sixth Painlevé equation”, Lett. Math. Phys., 38 (1996), 145–154, arXiv: chao-dyn/9507010 | DOI | MR | Zbl

[6] Komori Y., “Ruijsenaars' commuting difference operators and invariant subspace spanned by theta functions”, J. Math. Phys., 42 (2001), 4503–4522 | DOI | MR | Zbl

[7] Ruijsenaars S. N. M., “Integrable $BC_N$ analytic difference operators: hidden parameter symmetries and eigenfunctions”, New Trends in Integrability and Partial Solvability, NATO Sci. Ser. II Math. Phys. Chem., 132, Kluwer Acad. Publ., Dordrecht, 2004, 217–261 | DOI | MR | Zbl

[8] Takemura K., “Quasi-exact solvability of Inozemtsev models”, J. Phys. A: Math. Gen., 35 (2002), 8867–8881, arXiv: math.QA/0205274 | DOI | MR | Zbl

[9] Takemura K., “Heun's differential equation”, Selected Papers on Analysis and Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 230, Amer. Math. Soc., Providence, RI, 2010, 45–68 | DOI | MR

[10] Takemura K., “Degenerations of Ruijsenaars–van Diejen operator and $q$-Painlevé equations”, J. Integrable Syst., 2 (2017), xyx008, 27 pp., arXiv: 1608.07265 | DOI | MR

[11] Turbiner A. V., “Quasi-exactly-solvable problems and ${\rm sl}(2)$ algebra”, Comm. Math. Phys., 118 (1988), 467–474 | DOI | MR | Zbl

[12] Yamada Y., “Lax formalism for $q$-{P}ainlevé equations with affine Weyl group symmetry of type $E^{(1)}_n$”, Int. Math. Res. Not., 2011 (2011), 3823–3838, arXiv: 1004.1687 | DOI | MR | Zbl