@article{SIGMA_2018_14_a6,
author = {Olivier Dudas and Nicolas Jacon},
title = {Alvis{\textendash}Curtis {Duality} for {Finite} {General} {Linear} {Groups} and {a~Generalized} {Mullineux} {Involution}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a6/}
}
TY - JOUR AU - Olivier Dudas AU - Nicolas Jacon TI - Alvis–Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a6/ LA - en ID - SIGMA_2018_14_a6 ER -
%0 Journal Article %A Olivier Dudas %A Nicolas Jacon %T Alvis–Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a6/ %G en %F SIGMA_2018_14_a6
Olivier Dudas; Nicolas Jacon. Alvis–Curtis Duality for Finite General Linear Groups and a Generalized Mullineux Involution. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a6/
[1] Alvis D., “The duality operation in the character ring of a finite Chevalley group”, Bull. Amer. Math. Soc. (N.S.), 1 (1979), 907–911 | DOI | MR | Zbl
[2] Bezrukavnikov R., Hilbert schemes and stable pairs, unpublished notes
[3] Brundan J., “Modular branching rules and the Mullineux map for Hecke algebras of type $A$”, Proc. London Math. Soc., 77 (1998), 551–581 | DOI | MR | Zbl
[4] Cabanes M., Enguehard M., “Representation theory of finite reductive groups”, v. 1, New Mathematical Monographs, Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[5] Cabanes M., Rickard J., “Alvis–Curtis duality as an equivalence of derived categories”, Modular Representation Theory of Finite Groups (Charlottesville, VA, 1998), de Gruyter, Berlin, 2001, 157–174 | MR | Zbl
[6] Chuang J., Rouquier R., “Derived equivalences for symmetric groups and $\mathfrak{sl}_2$-categorification”, Ann. of Math., 167 (2008), 245–298, arXiv: math.RT/0407205 | DOI | MR | Zbl
[7] Chuang J., Rouquier R., Perverse equivalences, in preparation
[8] Curtis C. W., “Truncation and duality in the character ring of a finite group of Lie type”, J. Algebra, 62 (1980), 320–332 | DOI | MR | Zbl
[9] Curtis C. W., Reiner I., Methods of representation theory, v. II, Pure and Applied Mathematics (New York), With applications to finite groups and orders, John Wiley Sons, Inc., New York, 1987 | MR | Zbl
[10] Deligne P., Lusztig G., “Duality for representations of a reductive group over a finite field”, J. Algebra, 74 (1982), 284–291 | DOI | MR | Zbl
[11] Dipper R., Du J., “Harish–Chandra vertices and Steinberg's tensor product theorems for finite general linear groups”, Proc. London Math. Soc., 75 (1997), 559–599 | DOI | MR | Zbl
[12] Dreyfus-Schmidt L., Équivalences perverses splendides, conditions de stabilité et catégorification du complexe de Coxeter, Ph.D. Thesis, Paris Diderot – Paris 7, 2014
[13] Dudas O., Varagnolo M., Vasserot E., Categorical actions on unipotent representations I. Finite unitary groups, arXiv: 1509.03269
[14] Ford B., Kleshchev A. S., “A proof of the Mullineux conjecture”, Math. Z., 226 (1997), 267–308 | DOI | MR | Zbl
[15] Geck M., “On the modular composition factors of the Steinberg representation”, J. Algebra, 475 (2017), 370–391 | DOI | MR | Zbl
[16] Geck M., Hiss G., Malle G., “Cuspidal unipotent Brauer characters”, J. Algebra, 168 (1994), 182–220 | DOI | MR | Zbl
[17] Geck M., Hiss G., Malle G., “Towards a classification of the irreducible representations in non-describing characteristic of a finite group of Lie type”, Math. Z., 221 (1996), 353–386 | DOI | MR | Zbl
[18] Gerber T., Hiss G., Jacon N., “Harish–Chandra series in finite unitary groups and crystal graphs”, Int. Math. Res. Not., 2015 (2015), 12206–12250, arXiv: 1408.1210 | DOI | MR | Zbl
[19] Hiss G., “Harish–Chandra series of Brauer characters in a finite group with a split $BN$-pair”, J. London Math. Soc., 48 (1993), 219–228 | DOI | MR | Zbl
[20] Kleshchev A. S., “Branching rules for modular representations of symmetric groups. III. Some corollaries and a problem of Mullineux”, J. London Math. Soc., 54 (1996), 25–38 | DOI | MR | Zbl
[21] Lascoux A., Leclerc B., Thibon J.-Y., “Hecke algebras at roots of unity and crystal bases of quantum affine algebras”, Comm. Math. Phys., 181 (1996), 205–263 | DOI | MR | Zbl
[22] Linckelmann M., Schroll S., “A two-sided $q$-analogue of the Coxeter complex”, J. Algebra, 289 (2005), 128–134 | DOI | MR | Zbl
[23] Losev I., Supports of simple modules in cyclotomic Cherednik categories $\mathcal{O}$, arXiv: 1509.00526
[24] Losev I., “Rational Cherednik algebras and categorification”, Categorification and Higher Representation Theory, Contemp. Math., 683, Amer. Math. Soc., Providence, RI, 2017, 1–40, arXiv: 1509.08550 | DOI | MR | Zbl
[25] Misra K., Miwa T., “Crystal base for the basic representation of $U_q(\widehat{\mathfrak{sl}}(n))$”, Comm. Math. Phys., 134 (1990), 79–88 | DOI | MR | Zbl
[26] Mullineux G., “Bijections of $p$-regular partitions and $p$-modular irreducibles of the symmetric groups”, J. London Math. Soc., 20 (1979), 60–66 | DOI | MR | Zbl
[27] Seeber J., On Harish-Chandra induction and the Hom-functor, MSc Thesis, RWTH Aachen University, 2016