@article{SIGMA_2018_14_a59,
author = {Chris Cummins and Rodrigo Matias},
title = {$(2+)${-Replication} and the {Baby} {Monster}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a59/}
}
Chris Cummins; Rodrigo Matias. $(2+)$-Replication and the Baby Monster. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a59/
[1] Alexander D., Cummins C., McKay J., Simons C., “Completely replicable functions”, Groups, Combinatorics Geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., 165, Cambridge University Press, Cambridge, 1992, 87–98 | DOI | MR | Zbl
[2] Borcherds R. E., “Vertex algebras, Kac–Moody algebras, and the Monster”, Proc. Nat. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR
[3] Borcherds R. E., “Generalized Kac–Moody algebras”, J. Algebra, 115 (1988), 501–512 | DOI | MR | Zbl
[4] Borcherds R. E., “Monstrous moonshine and monstrous Lie superalgebras”, Invent. Math., 109 (1992), 405–444 | DOI | MR | Zbl
[5] Carnahan S., “Generalized moonshine I: genus-zero functions”, Algebra Number Theory, 4 (2010), 649–679, arXiv: 0812.3440 | DOI | MR | Zbl
[6] Carnahan S., “Generalized moonshine II: Borcherds products”, Duke Math. J., 161 (2012), 893–950, arXiv: 0908.4223 | DOI | MR | Zbl
[7] Carnahan S., Generalized moonshine IV: monstrous Lie algebras, arXiv: 1208.6254 | MR
[8] Conway J. H., Norton S. P., “Monstrous moonshine”, Bull. London Math. Soc., 11 (1979), 308–339 | DOI | MR | Zbl
[9] Cummins C. J., “Congruence subgroups of groups commensurable with ${\rm PSL}(2,{\mathbb Z})$ of genus 0 and 1”, Experiment. Math., 13 (2004), 361–382 | DOI | MR | Zbl
[10] Cummins C. J., Gannon T., “Modular equations and the genus zero property of moonshine functions”, Invent. Math., 129 (1997), 413–443 | DOI | MR | Zbl
[11] Cummins C. J., Norton S. P., “Rational Hauptmoduls are replicable”, Canad. J. Math., 47 (1995), 1201–1218 | DOI | MR | Zbl
[12] Diamond F., Shurman J., A first course in modular forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005 | DOI | MR | Zbl
[13] Ferenbaugh C. R., On the modular functions involved in “Monstrous Moonshine”, Ph.D. Thesis, Princeton University, 1992 | MR
[14] Ford D., McKay J., Norton S., “More on replicable functions”, Comm. Algebra, 22 (1994), 5175–5193 | DOI | MR | Zbl
[15] Frenkel I. B., Lepowsky J., Meurman A., “A natural representation of the Fischer–Griess Monster with the modular function $J$ as character”, Proc. Nat. Acad. Sci. USA, 81 (1984), 3256–3260 | DOI | MR | Zbl
[16] Frenkel I. B., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[17] GAP – Groups, Algorithms, and Programming, Version 4.8.7, , 2017 http://www.gap-system.org/
[18] Höhn G., Generalized moonshine for the baby monster, Preprint, 2003
[19] Kozlov D. N., “On functions satisfying modular equations for infinitely many primes”, Canad. J. Math., 51 (1999), 1020–1034 | DOI | MR | Zbl
[20] Lepowsky J., Li H., Introduction to vertex operator algebras and their representations, Progress in Mathematics, 227, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR | Zbl
[21] Martin Y., “On modular invariance of completely replicable functions”, Moonshine, the Monster, and Related Topics (South Hadley, MA, 1994), Contemp. Math., 193, Amer. Math. Soc., Providence, RI, 1996, 263–286 | DOI | MR | Zbl
[22] Norton S. P., “More on moonshine”, Computational Group Theory (Durham, 1982), Academic Press, London, 1984, 185–193 | MR
[23] Norton S. P., “Generalized moonshine”, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., 47, Amer. Math. Soc., Providence, RI, 1987, 208–210
[24] Norton S. P., “Moonshine-type functions and the CRM correspondence”, Groups and symmetries, CRM Proc. Lecture Notes, 47, Amer. Math. Soc., Providence, RI, 2009, 327–342 | DOI | MR | Zbl
[25] Shimura G., Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, 11, Princeton University Press, Princeton, NJ, 1994 | MR | Zbl