@article{SIGMA_2018_14_a58,
author = {Charalampos A. Evripidou and Peter H. van der Kamp and Cheng Zhang},
title = {Dressing the {Dressing} {Chain}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a58/}
}
Charalampos A. Evripidou; Peter H. van der Kamp; Cheng Zhang. Dressing the Dressing Chain. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a58/
[1] Bogoyavlenskij O. I., “Integrable discretizations of the KdV equation”, Phys. Lett. A, 134 (1988), 34–38 | DOI | MR
[2] Bogoyavlenskij O. I., “Integrable Lotka–Volterra systems”, Regul. Chaotic Dyn., 13 (2008), 543–556 | DOI | MR | Zbl
[3] Burchnall J. L., Chaundy T. W., “Commutative ordinary differential operators”, Proc. London Math. Soc., 21 (1923), 420–440 | DOI | MR | Zbl
[4] Damianou P. A., Evripidou C. A., Kassotakis P., Vanhaecke P., “Integrable reductions of the Bogoyavlenskij–Itoh Lotka–Volterra systems”, J. Math. Phys., 58 (2017), 032704, 17 pp., arXiv: 1609.09507 | DOI | MR | Zbl
[5] Darboux G., Leçons sur la théorie générale des surfaces. I, II, Jacques Gabay, Sceaux, 1993 | MR
[6] Evripidou C. A., Kassotakis P., Vanhaecke P., “Integrable deformations of the Bogoyavlenskij–Itoh Lotka–Volterra systems”, Regul. Chaotic Dyn., 22 (2017), 721–739, arXiv: 1709.06763 | DOI | MR | Zbl
[7] Fordy A. P., Gibbons J., “Factorization of operators. I. Miura transformations”, J. Math. Phys., 21 (1980), 2508–2510 | DOI | MR | Zbl
[8] Fordy A. P., Hone A., “Discrete integrable systems and Poisson algebras from cluster maps”, Comm. Math. Phys., 325 (2014), 527–584, arXiv: 1207.6072 | DOI | MR | Zbl
[9] Garifullin R. N., Habibullin I. T., Yamilov R. I., “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A: Math. Theor., 48 (2015), 235201, 27 pp., arXiv: 1501.05435 | DOI | MR | Zbl
[10] Garifullin R. N., Yamilov R. I., “Integrable discrete nonautonomous quad-equations as Bäcklund auto-transformations for known Volterra and Toda type semidiscrete equations”, J. Phys. Conf. Ser., 621 (2015), 012005, 18 pp., arXiv: 1405.1835 | DOI
[11] Hietarinta J., Joshi N., Nijhoff F. W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl
[12] Infeld L., Hull T. E., “The factorization method”, Rev. Modern Phys., 23 (1951), 21–68 | DOI | MR | Zbl
[13] Laurent-Gengoux C., Pichereau A., Vanhaecke P., Poisson structures, Grundlehren der Mathematischen Wissenschaften, 347, Springer, Heidelberg, 2013 | DOI | MR
[14] Levi D., “Nonlinear differential-difference equations as Bäcklund transformations”, J. Phys. A: Math. Gen., 14 (1981), 1083–1098 | DOI | MR | Zbl
[15] Levi D., Benguria R., “Bäcklund transformations and nonlinear differential difference equations”, Proc. Nat. Acad. Sci. USA, 77 (1980), 5025–5027 | DOI | MR | Zbl
[16] Levi D., Yamilov R. I., “The generalized symmetry method for discrete equations”, J. Phys. A: Math. Theor., 42 (2009), 454012, 18 pp., arXiv: 0902.4421 | DOI | MR | Zbl
[17] Matveev V. B., Salle M. A., “Differential-difference evolution equations. II. Darboux transformation for the Toda lattice”, Lett. Math. Phys., 3 (1979), 425–429 | DOI | MR | Zbl
[18] Matveev V. B., Salle M. A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[19] Miura R. M., “Korteweg–de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation”, J. Math. Phys., 9 (1968), 1202–1204 | DOI | MR | Zbl
[20] Nijhoff F., Capel H., “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39 (1995), 133–158 | DOI | MR | Zbl
[21] Schrödinger E., “A method of determining quantum-mechanical eigenvalues and eigenfunctions”, Proc. Roy. Irish Acad. Sect. A., 46 (1940), 9–16 | MR
[22] Schrödinger E., “Further studies on solving eigenvalue problems by factorization”, Proc. Roy. Irish Acad. Sect. A., 46 (1941), 183–206 | MR | Zbl
[23] Shabat A., “The infinite-dimensional dressing dynamical system”, Inverse Problems, 8 (1992), 303–308 | DOI | MR | Zbl
[24] Shabat A., “Dressing chains and lattices”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEEDS '79 (Gallipoli, 1999), World Sci. Publ., River Edge, NJ, 2000, 331–342 | DOI | MR | Zbl
[25] Shabat A. B., Yamilov R. I., “Symmetries of nonlinear lattices”, Leningrad Math. J., 2 (1991), 377–400 | MR | Zbl
[26] Spiridonov V., Zhedanov A., “Discrete Darboux transformations, the discrete-time Toda lattice, and the Askey–Wilson polynomials”, Methods Appl. Anal., 2 (1995), 369–398 | DOI | MR | Zbl
[27] Tran D. T., van der Kamp P. H., Quispel G. R. W., “Closed-form expressions for integrals of traveling wave reductions of integrable lattice equations”, J. Phys. A: Math. Theor., 42 (2009), 225201, 20 pp. | DOI | MR | Zbl
[28] van der Kamp P. H., Kouloukas T. E., Quispel G. R. W., Tran D. T., Vanhaecke P., “Integrable and superintegrable systems associated with multi-sums of products”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140481, 23 pp., arXiv: 1406.4585 | DOI | MR | Zbl
[29] van der Kamp P. H., Quispel G. R. W., “The staircase method: integrals for periodic reductions of integrable lattice equations”, J. Phys. A: Math. Theor., 43 (2010), 465207, 34 pp., arXiv: 1005.2071 | DOI | MR | Zbl
[30] Veselov A. P., Shabat A. B., “A dressing chain and the spectral theory of the Schrödinger operator”, Funct. Anal. Appl., 27 (1993), 81–96 | DOI | MR | Zbl
[31] Wahlquist H. D., Estabrook F. B., “Bäcklund transformation for solutions of the Korteweg–de Vries equation”, Phys. Rev. Lett., 31 (1973), 1386–1390 | DOI | MR
[32] Zhang C., Peng L., Zhang D.-J., Discrete Crum's theorems and integrable lattice equations, arXiv: 1802.10044