Fuchsian Equations with Three Non-Apparent Singularities
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that for every second order Fuchsian linear differential equation $E$ with $n$ singularities of which $n-3$ are apparent there exists a hypergeometric equation $H$ and a linear differential operator with polynomial coefficients which maps the space of solutions of $H$ into the space of solutions of $E$. This map is surjective for generic parameters. This justifies one statement of Klein (1905). We also count the number of such equations $E$ with prescribed singularities and exponents. We apply these results to the description of conformal metrics of curvature $1$ on the punctured sphere with conic singularities, all but three of them having integer angles.
Keywords: Fuchsian equations; hypergeometric equation; difference equations; apparent singularities; bispectral duality; positive curvature; conic singularities.
@article{SIGMA_2018_14_a57,
     author = {Alexandre Eremenko and Vitaly Tarasov},
     title = {Fuchsian {Equations} with {Three} {Non-Apparent} {Singularities}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a57/}
}
TY  - JOUR
AU  - Alexandre Eremenko
AU  - Vitaly Tarasov
TI  - Fuchsian Equations with Three Non-Apparent Singularities
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a57/
LA  - en
ID  - SIGMA_2018_14_a57
ER  - 
%0 Journal Article
%A Alexandre Eremenko
%A Vitaly Tarasov
%T Fuchsian Equations with Three Non-Apparent Singularities
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a57/
%G en
%F SIGMA_2018_14_a57
Alexandre Eremenko; Vitaly Tarasov. Fuchsian Equations with Three Non-Apparent Singularities. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a57/

[1] Buckman R., Schmitt N., Spherical polygons and unitarization, http://www.gang.umass.edu/reu/2002/gon.pdf

[2] Cui G., Gao Y., Rugh H. H., Tan L., “Rational maps as {S}chwarzian primitives”, Sci. China Math., 59 (2016), 1267–1284, arXiv: 1511.04246 | DOI | MR | Zbl

[3] Eremenko A., “Metrics of positive curvature with conic singularities on the sphere”, Proc. Amer. Math. Soc., 132 (2004), 3349–3355, arXiv: math.MG/0208025 | DOI | MR | Zbl

[4] Eremenko A., “Co-axial monodromy”, Ann. Sc. Norm. Super. Pisa (to appear) , arXiv: 1706.04608 | DOI

[5] Eremenko A., Gabrielov A., Shapiro M., Vainshtein A., “Rational functions and real Schubert calculus”, Proc. Amer. Math. Soc., 134 (2006), 949–957, arXiv: math.AG/0407408 | DOI | MR | Zbl

[6] Eremenko A., Gabrielov A., Tarasov V., “Metrics with conic singularities and spherical polygons”, Illinois J. Math., 58 (2014), 739–755, arXiv: 1405.1738 | MR | Zbl

[7] Eremenko A., Gabrielov A., Tarasov V., “Spherical quadrilaterals with three non-integer angles”, J. Math. Phys. Anal. Geom., 12 (2016), 134–167, arXiv: 1504.02928 | DOI | MR | Zbl

[8] Fujimori S., Kawakami Y., Kokubu M., Rossman W., Umehara M., Yamada K., “CMC-1 trinoids in hyperbolic 3-space and metrics of constant curvature one with conical singularities on the 2-sphere”, Proc. Japan Acad. Ser. A Math. Sci., 87 (2011), 144–149, arXiv: 1008.3734 | DOI | MR | Zbl

[9] Heins M., “On a class of conformal metrics”, Nagoya Math. J., 21 (1962), 1–60 | DOI | MR | Zbl

[10] Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, E16, Friedr. Vieweg Sohn, Braunschweig, 1991 | DOI | MR

[11] Klein F., Mathematisches Seminar zu Göttingen, Winter-Semester 1905/06 http://www.claymath.org/publications/klein-protokolle

[12] Mondello G., Panov D., “Spherical metrics with conical singularities on a 2-sphere: angle constraints”, Int. Math. Res. Not., 2016 (2016), 4937–4995, arXiv: 1505.01994 | DOI | MR

[13] Mukhin E., Tarasov V., Varchenko A., “Bispectral and {$({\mathfrak{gl}}_N,{\mathfrak{gl}}_M)$} dualities, discrete versus differential”, Adv. Math., 218 (2008), 216–265, arXiv: math.QA/0605172 | DOI | MR | Zbl

[14] Picard E., “De l'intégration de l'équation {$\Delta u=e^u$} sur une surface de Riemann fermée”, J. Reine Angew. Math., 130 (1905), 243–258 | DOI | MR

[15] Scherbak I., “Rational functions with prescribed critical points”, Geom. Funct. Anal., 12 (2002), 1365–1380, arXiv: math.QA/0205168 | DOI | MR | Zbl

[16] Schilling F., “Ueber die Theorie der symmetrischen {$S$}-Functionen mit einem einfachen Nebenpunkte”, Math. Ann., 51 (1899), 481–522 | DOI | MR | Zbl

[17] Shafarevich I. R., Basic algebraic geometry. I. Varieties in projective space, 2nd ed., Springer-Verlag, Berlin, 1994 | DOI | MR

[18] Troyanov M., “Prescribing curvature on compact surfaces with conical singularities”, Trans. Amer. Math. Soc., 324 (1991), 793–821 | DOI | MR | Zbl