@article{SIGMA_2018_14_a56,
author = {Ian Kiming and Nadim Rustom},
title = {Dihedral {Group,} $4${-Torsion} on an {Elliptic} {Curve,} and a {Peculiar} {Eigenform} {Modulo~}$4$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a56/}
}
TY - JOUR AU - Ian Kiming AU - Nadim Rustom TI - Dihedral Group, $4$-Torsion on an Elliptic Curve, and a Peculiar Eigenform Modulo $4$ JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a56/ LA - en ID - SIGMA_2018_14_a56 ER -
Ian Kiming; Nadim Rustom. Dihedral Group, $4$-Torsion on an Elliptic Curve, and a Peculiar Eigenform Modulo $4$. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a56/
[1] Bellaïche J., Chenevier G., Families of Galois representations and Selmer groups, Astérisque, 2009, xii+314 pp. | MR
[2] Bellaïche J., Khare C., “Level 1 Hecke algebras of modular forms modulo $p$”, Compos. Math., 151 (2015), 397–415 | DOI | MR | Zbl
[3] Calegari F., Emerton M., “The Hecke algebra $T_k$ has large index”, Math. Res. Lett., 11 (2004), 125–137, arXiv: math.NT/0311367 | DOI | MR | Zbl
[4] Camporino M., Pacetti A., “Congruences between modular forms modulo prime powers”, Rev. Mat. Iberoamericana (to appear) , arXiv: 1312.4925
[5] Carayol H., “Formes modulaires et représentations galoisiennes à valeurs dans un anneau local complet, in $p$-Adic Monodromy and the Birch and Swinnerton–Dyer Conjecture” (Boston, MA, 1991), Contemp. Math., 165, Amer. Math. Soc., Providence, RI, 1994, 213–237 | DOI | MR | Zbl
[6] Chen I., Kiming I., “On the theta operator for modular forms modulo prime powers”, Mathematika, 62 (2016), 321–336, arXiv: 1301.3087 | DOI | MR | Zbl
[7] Chen I., Kiming I., Rasmussen J. B., “On congruences mod ${\mathfrak p}^m$ between eigenforms and their attached Galois representations”, J. Number Theory, 130 (2010), 608–619, arXiv: 0809.3622 | DOI | MR | Zbl
[8] Chen I., Kiming I., Wiese G., “On modular Galois representations modulo prime powers”, Int. J. Number Theory, 9 (2013), 91–113, arXiv: 1105.1918 | DOI | MR
[9] Grosswald E., Representations of integers as sums of squares, Springer-Verlag, New York, 1985 | DOI | MR | Zbl
[10] Hatada K., “Congruences of the eigenvalues of Hecke operators”, Proc. Japan Acad. Ser. A Math. Sci., 53 (1977), 125–128 | DOI | MR | Zbl
[11] Jensen C. U., Ledet A., Yui N., Generic polynomials. Constructive aspects of the inverse Galois problem, Mathematical Sciences Research Institute Publications, 45, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[12] Jochnowitz N., “Congruences between systems of eigenvalues of modular forms”, Trans. Amer. Math. Soc., 270 (1982), 269–285 | DOI | MR | Zbl
[13] Katz N. M., “Higher congruences between modular forms”, Ann. of Math., 101 (1975), 332–367 | DOI | MR | Zbl
[14] Kiming I., “The classification of certain low-order $2$-extensions of a field of characteristic different from $2$”, C. R. Math. Rep. Acad. Sci. Canada, 11 (1989), 57–61 | MR | Zbl
[15] Kiming I., “On the asymptotics of the number of $\overline p$-core partitions of integers”, Acta Arith., 80 (1997), 127–139 | DOI | MR | Zbl
[16] Kiming I., “On the existence of $\overline p$-core partitions of natural numbers”, Quart. J. Math. Oxford Ser. (2), 48 (1997), 59–65 | DOI | MR | Zbl
[17] Kiming I., Olsson J. B., “Congruences like Ramanujan's for powers of the partition function”, Arch. Math. (Basel), 59 (1992), 348–360 | DOI | MR | Zbl
[18] Kiming I., Rustom N., Wiese G., “On certain finiteness questions in the arithmetic of modular forms”, J. Lond. Math. Soc., 94 (2016), 479–502, arXiv: 1408.3249 | DOI | MR | Zbl
[19] Kolberg O., “Congruences for Ramanujan's function $\tau (n)$”, Arbok Univ. Bergen Mat.-Natur. Ser., 1962, 1962, 8 pp. | MR
[20] The LMFDB Collaboration, The $L$-functions and Modular Forms Database http://www.lmfdb.org
[21] Ono K., Robins S., Wahl P. T., “On the representation of integers as sums of triangular numbers”, Aequationes Math., 50 (1995), 73–94 | DOI | MR | Zbl
[22] Petersson H., Modulfunktionen und quadratische Formen, Ergebnisse der Mathematik und ihrer Grenzgebiete, 100, Springer-Verlag, Berlin, 1982 | DOI | MR | Zbl
[23] Rustom N., “Filtrations of dc-weak eigenforms”, Acta Arith., 180 (2017), 297–318, arXiv: 1603.02884 | DOI | MR
[24] Rustom N., Congruences modulo prime powers of Hecke eigenvalues in level $1$, arXiv: 1710.00928
[25] Swinnerton-Dyer H. P. F., “On $l$-adic representations and congruences for coefficients of modular forms”, Modular functions of one variable, III, Proc. Internat. Summer School (Univ. Antwerp, 1972), Lecture Notes in Math., 1350, Springer, Berlin, 1973, 1–55 | DOI | MR
[26] Taixés i Ventosa X., Wiese G., “Computing congruences of modular forms and Galois representations modulo prime powers”, Arithmetic, Geometry, Cryptography and Coding Theory 2009, Contemp. Math., 521, Amer. Math. Soc., Providence, RI, 2010, 145–166, arXiv: 0909.2724 | DOI | MR | Zbl
[27] Tsaknias P., On higher congruences of modular Galois representations, Ph.D. Thesis, The University of Sheffield, 2009
[28] Tsaknias P., Wiese G., “Topics on modular Galois representations modulo prime powers”, Algorithmic and Experimental Methods in Algebra, Geometry, and Number Theory, eds. G. Böckle, W. Decker, G. Malle, Springer, Cham, 2017, 741–763, arXiv: 1612.05017 | DOI