The Künneth Formula for the Twisted de Rham and Higgs Cohomologies
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove the Künneth formula for the irregular Hodge filtrations on the exponentially twisted de Rham and the Higgs cohomologies of smooth quasi-projective complex varieties. The method involves a careful comparison of the underlying chain complexes under a certain elimination of indeterminacy.
Keywords: de Rham complex; Hodge filtration; Künneth formula.
@article{SIGMA_2018_14_a54,
     author = {Kai-Chieh Chen and Jeng-Daw Yu},
     title = {The {K\"unneth} {Formula} for the {Twisted} de {Rham} and {Higgs} {Cohomologies}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a54/}
}
TY  - JOUR
AU  - Kai-Chieh Chen
AU  - Jeng-Daw Yu
TI  - The Künneth Formula for the Twisted de Rham and Higgs Cohomologies
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a54/
LA  - en
ID  - SIGMA_2018_14_a54
ER  - 
%0 Journal Article
%A Kai-Chieh Chen
%A Jeng-Daw Yu
%T The Künneth Formula for the Twisted de Rham and Higgs Cohomologies
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a54/
%G en
%F SIGMA_2018_14_a54
Kai-Chieh Chen; Jeng-Daw Yu. The Künneth Formula for the Twisted de Rham and Higgs Cohomologies. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a54/

[1] Esnault H., Sabbah C., Yu J.-D., “$E_1$-degeneration of the irregular Hodge filtration”, J. Reine Angew. Math., 729 (2017), 171–227, arXiv: 1302.4537 | DOI | MR | Zbl

[2] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR | Zbl

[3] Katzarkov L., Kontsevich M., Pantev T., “Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models”, J. Differential Geom., 105 (2017), 55–117, arXiv: 1409.5996 | DOI | MR | Zbl

[4] Mochizuki T., “A twistor approach to the Kontsevich complexes”, Manuscripta Math. (to appear) , arXiv: 1501.04145 | DOI

[5] Mochizuki T., Twistor property of GKZ-hypergeometric systems, arXiv: 1501.04146

[6] Mochizuki T., Mixed twistor $\mathcal D$-modules, Lecture Notes in Mathematics, 2125, Springer, Cham, 2015 | DOI | MR | Zbl

[7] Sabbah C., “Monodromy at infinity and Fourier transform”, Publ. Res. Inst. Math. Sci., 33 (1997), 643–685 | DOI | MR | Zbl

[8] Sabbah C., Irregular Hodge theory, arXiv: 1511.00176

[9] Sabbah C., Yu J.-D., “On the irregular Hodge filtration of exponentially twisted mixed Hodge modules”, Forum Math. Sigma, 3 (2015), e9, 71 pp., arXiv: 1406.1339 | DOI | MR | Zbl

[10] Sampson J. H., Washnitzer G., “A Künneth formula for coherent algebraic sheaves”, Illinois J. Math., 3 (1959), 389–402 | MR | Zbl

[11] Yu J.-D., “Irregular Hodge filtration on twisted de Rham cohomology”, Manuscripta Math., 144 (2014), 99–133, arXiv: 1203.2338 | DOI | MR | Zbl