@article{SIGMA_2018_14_a54,
author = {Kai-Chieh Chen and Jeng-Daw Yu},
title = {The {K\"unneth} {Formula} for the {Twisted} de {Rham} and {Higgs} {Cohomologies}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a54/}
}
Kai-Chieh Chen; Jeng-Daw Yu. The Künneth Formula for the Twisted de Rham and Higgs Cohomologies. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a54/
[1] Esnault H., Sabbah C., Yu J.-D., “$E_1$-degeneration of the irregular Hodge filtration”, J. Reine Angew. Math., 729 (2017), 171–227, arXiv: 1302.4537 | DOI | MR | Zbl
[2] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR | Zbl
[3] Katzarkov L., Kontsevich M., Pantev T., “Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models”, J. Differential Geom., 105 (2017), 55–117, arXiv: 1409.5996 | DOI | MR | Zbl
[4] Mochizuki T., “A twistor approach to the Kontsevich complexes”, Manuscripta Math. (to appear) , arXiv: 1501.04145 | DOI
[5] Mochizuki T., Twistor property of GKZ-hypergeometric systems, arXiv: 1501.04146
[6] Mochizuki T., Mixed twistor $\mathcal D$-modules, Lecture Notes in Mathematics, 2125, Springer, Cham, 2015 | DOI | MR | Zbl
[7] Sabbah C., “Monodromy at infinity and Fourier transform”, Publ. Res. Inst. Math. Sci., 33 (1997), 643–685 | DOI | MR | Zbl
[8] Sabbah C., Irregular Hodge theory, arXiv: 1511.00176
[9] Sabbah C., Yu J.-D., “On the irregular Hodge filtration of exponentially twisted mixed Hodge modules”, Forum Math. Sigma, 3 (2015), e9, 71 pp., arXiv: 1406.1339 | DOI | MR | Zbl
[10] Sampson J. H., Washnitzer G., “A Künneth formula for coherent algebraic sheaves”, Illinois J. Math., 3 (1959), 389–402 | MR | Zbl
[11] Yu J.-D., “Irregular Hodge filtration on twisted de Rham cohomology”, Manuscripta Math., 144 (2014), 99–133, arXiv: 1203.2338 | DOI | MR | Zbl