@article{SIGMA_2018_14_a53,
author = {Samuel Belliard and Nikita A. Slavnov and Benoit Vallet},
title = {Modified {Algebraic} {Bethe} {Ansatz:} {Twisted} {XXX} {Case}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a53/}
}
TY - JOUR AU - Samuel Belliard AU - Nikita A. Slavnov AU - Benoit Vallet TI - Modified Algebraic Bethe Ansatz: Twisted XXX Case JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a53/ LA - en ID - SIGMA_2018_14_a53 ER -
Samuel Belliard; Nikita A. Slavnov; Benoit Vallet. Modified Algebraic Bethe Ansatz: Twisted XXX Case. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a53/
[1] Avan J., Belliard S., Grosjean N., Pimenta R.A., “Modified algebraic Bethe ansatz for XXZ chain on the segment – III – Proof”, Nuclear Phys. B, 899 (2015), 229–246, arXiv: 1506.02147 | DOI | MR | Zbl
[2] Belliard S., “Modified algebraic Bethe ansatz for XXZ chain on the segment – I: Triangular cases”, Nuclear Phys. B, 892 (2015), 1–20, arXiv: 1408.4840 | DOI | MR | Zbl
[3] Belliard S., “Modified algebraic Bethe ansatz for XXZ chain on the segment – II – General cases”, Nuclear Phys. B, 894 (2015), 527–552, arXiv: 1412.7511 | DOI | MR | Zbl
[4] Belliard S., Crampé N., “Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe ansatz”, SIGMA, 9 (2013), 072, 12 pp., arXiv: 1209.4269 | DOI | MR | Zbl
[5] Belliard S., Crampé N., Ragoucy E., “The scattering matrix for a general ${\rm gl}(2)$ spin chain”, J. Stat. Mech. Theory Exp., 2009 (2009), P12003, 29 pp., arXiv: 0909.1520 | DOI | MR
[6] Belliard S., Pakuliak S., Ragoucy E., Slavnov N.A., “Bethe vectors of ${\rm GL}(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013 (2013), P02020, 24 pp., arXiv: 1210.0768 | DOI | MR
[7] Belliard S., Pimenta R.A., “Slavnov and Gaudin–Korepin formulas for models without ${\rm U}(1)$ symmetry: the twisted XXX chain”, SIGMA, 11 (2015), 099, 12 pp., arXiv: 1506.06550 | DOI | MR | Zbl
[8] Belliard S., Slavnov N.A., “A note on $\mathfrak{gl}_2$-invariant Bethe vectors”, J. High Energy Phys., 2018:4 (2018), 031, 15 pp., arXiv: 1802.07576 | DOI
[9] Cao J., Yang W.L., Shi K., Wang Y., “Off-diagonal Bethe ansatz and exact solution a topological spin ring”, Phys. Rev. Lett., 111 (2013), 137201, 5 pp., arXiv: 1305.7328 | DOI
[10] Cao J., Yang W.-L., Shi K., Wang Y., “Off-diagonal Bethe ansatz solution of the XXX spin chain with arbitrary boundary conditions”, Nuclear Phys. B, 875 (2013), 152–165, arXiv: 1306.1742 | DOI | MR | Zbl
[11] Crampé N., “Algebraic Bethe ansatz for the totally asymmetric simple exclusion process with boundaries”, J. Phys. A: Math. Theor., 48 (2015), 08FT01, 12 pp., arXiv: 1411.7954 | DOI | MR
[12] Crampé N., “Algebraic Bethe ansatz for the XXZ Gaudin models with generic boundary”, SIGMA, 13 (2017), 094, 13 pp., arXiv: 1710.08490 | DOI | MR | Zbl
[13] Derkachev S.E., “The $R$-matrix factorization, $Q$-operator, and variable separation in the case of the XXX spin chain with the ${\rm SL}(2,{\mathbb C})$ symmetry group”, Theoret. and Math. Phys., 169 (2011), 1539–1550 | DOI | MR | Zbl
[14] Drinfel'd V.G., “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, 2, Amer. Math. Soc., Providence, RI, 1987, 798–820 | MR
[15] Faddeev L.D., Sklyanin E.K., Takhtajan L.A., “Quantum inverse problem. I”, Theoret. and Math. Phys., 40 (1979), 688–706 | DOI
[16] Faddeev L.D., Takhtadzhyan L.A., “Spectrum and scattering of excitations in the one-dimensional isotropic Heisenberg model”, J. Sov. Math., 24 (1984), 241–267 | DOI | Zbl
[17] Fioravanti D., Nepomechie R.I., “An inhomogeneous Lax representation for the Hirota equation”, J. Phys. A: Math. Theor., 50 (2017), 054001, 14 pp., arXiv: 1609.06761 | DOI | MR | Zbl
[18] Gromov N., Levkovich-Maslyuk F., Sizov G., “New construction of eigenstates and separation of variables for ${\rm SU}(N)$ quantum spin chains”, J. High Energy Phys., 2017:9 (2017), 111, 40 pp., arXiv: 1610.08032 | DOI | MR | Zbl
[19] Hao W., Nepomechie R.I., Sommese A.J., “Completeness of solutions of Bethe's equations”, Phys. Rev. E, 88 (2013), 052113, 8 pp., arXiv: 1308.4645 | DOI
[20] Jiang Y., Zhang Y., “Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE”, J. High Energy Phys., 2018:3 (2018), 087, 40 pp., arXiv: 1710.04693 | DOI
[21] Marboe C., Volin D., “Fast analytic solver of rational Bethe equations”, J. Phys. A: Math. Theor., 50 (2017), 204002, 14 pp., arXiv: 1608.06504 | DOI | MR | Zbl
[22] Molev A.I., “Yangians and their applications”, Handbook of Algebra, v. 3, Elsevier/North-Holland, 2003, 907–959, arXiv: math.QA/0211288 | DOI | MR | Zbl
[23] Nepomechie R.I., “An inhomogeneous $T$-$Q$ equation for the open XXX chain with general boundary terms: completeness and arbitrary spin”, J. Phys. A: Math. Theor., 46 (2013), 442002, 7 pp., arXiv: 1307.5049 | DOI | MR | Zbl
[24] Niccoli G., “Form factors and complete spectrum of XXX antiperiodic higher spin chains by quantum separation of variables”, J. Math. Phys., 54 (2013), 053516, 20 pp., arXiv: 1206.2418 | DOI | MR | Zbl
[25] Pronko G.P., Stroganov Y.G. Yangians and their applications Bethe equations “on the wrong side of the equator”, J. Phys. A: Math. Gen., 32 (1999), 2333–2340, arXiv: hep-th/9808153 | DOI | MR | Zbl
[26] Ribeiro G.A.P., Martins M.J., Galleas W., “Integrable ${\rm SU}(N)$ vertex models with general toroidal boundary conditions”, Nuclear Phys. B, 675 (2003), 567–583, arXiv: nlin.SI/0308011 | DOI | MR | Zbl
[27] Sklyanin E.K., “Boundary conditions for integrable quantum systems”, J. Phys. A: Math. Gen., 21 (1988), 2375–2389 | DOI | MR | Zbl
[28] Sklyanin E.K., “Quantum inverse scattering method. Selected topics”, Quantum Group and Quantum Integrable Systems, Nankai Lectures Math. Phys., World Sci. Publ., River Edge, NJ, 1992, 63–97, arXiv: hep-th/9211111 | MR
[29] Wang Y., Yang W.-L., Cao J., Shi K., Off-diagonal Bethe ansatz for exactly solvable models, Springer, Heidelberg, 2015 | DOI | MR | Zbl
[30] Zhang X., Li Y.-Y., Cao J., Yang W.-L., Shi K., Wang Y., “Bethe states of the XXZ spin-$\frac12$ chain with arbitrary boundary fields”, Nuclear Phys. B, 893 (2015), 70–88, arXiv: 1412.6905 | DOI | MR | Zbl
[31] Zhang X., Li Y.-Y., Cao J., Yang W.-L., Shi K., Wang Y., “Retrieve the Bethe states of quantum integrable models solved via the off-diagonal Bethe Ansatz”, J. Stat. Mech. Theory Exp., 2015, P05014, 18 pp., arXiv: 1407.5294 | DOI | MR