@article{SIGMA_2018_14_a52,
author = {Sho Matsumoto},
title = {A {Spin} {Analogue} of {Kerov} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a52/}
}
Sho Matsumoto. A Spin Analogue of Kerov Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a52/
[1] Biane P., “Representations of symmetric groups and free probability”, Adv. Math., 138 (1998), 126–181 | DOI | MR | Zbl
[2] Biane P., “Characters of symmetric groups and free cumulants”, Asymptotic Combinatorics with Applications to Mathematical Physics (St. Petersburg, 2001), Lecture Notes in Math., 1815, Springer, Berlin, 2003, 185–200 | DOI | MR | Zbl
[3] De Stavola D., Asymptotic results for representations of finite groups, Ph.D. Thesis, Universität Zürich, 2017, arXiv: 1805.04065
[4] Dołȩga M., Féray V., “Gaussian fluctuations of Young diagrams and structure constants of Jack characters”, Duke Math. J., 165 (2016), 1193–1282, arXiv: 1402.4615 | DOI | MR | Zbl
[5] Dołȩga M., Féray V., Śniady P., “Explicit combinatorial interpretation of {K}erov character polynomials as numbers of permutation factorizations”, Adv. Math., 225 (2010), 81–120, arXiv: 0810.3209 | DOI | MR | Zbl
[6] Dołȩga M., Féray V., Śniady P., “Jack polynomials and orientability generating series of maps”, Sém. Lothar. Combin., 70 (2013), B70j, 50 pp., arXiv: 1301.6531 | MR
[7] Féray V., “Combinatorial interpretation and positivity of {K}erov's character polynomials”, J. Algebraic Combin., 29 (2009), 473–507, arXiv: 0710.5885 | DOI | MR | Zbl
[8] Féray V., Śniady P., “Asymptotics of characters of symmetric groups related to Stanley character formula”, Ann. of Math., 173 (2011), 887–906, arXiv: math.RT/0701051 | DOI | MR | Zbl
[9] Féray V., Śniady P., “Zonal polynomials via Stanley's coordinates and free cumulants”, J. Algebra, 334 (2011), 338–373, arXiv: 1005.0316 | DOI | MR | Zbl
[10] Hoffman P.N., Humphreys J.F., Projective representations of the symmetric groups. $Q$-functions and shifted tableaux, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992 | MR
[11] Hora A., The limit shape problem for ensembles of Young diagrams, Springer Briefs in Mathematical Physics, 17, Springer, Tokyo, 2016 | DOI | MR | Zbl
[12] Ivanov V., “The Gaussian limit for projective characters of large symmetric groups”, J. Math. Sci., 121 (2004), 2330–2344 | DOI | MR
[13] Ivanov V., “Plancherel measure on shifted Young diagrams”, Representation theory, dynamical systems, and asymptotic combinatorics, Amer. Math. Soc. Transl. Ser. 2, 217, Amer. Math. Soc., Providence, RI, 2006, 73–86 | DOI | MR | Zbl
[14] Ivanov V., Olshanski G., “Kerov's central limit theorem for the Plancherel measure on Young diagrams”, Symmetric Functions 2001: Surveys of Developments and Perspectives, NATO Sci. Ser. II Math. Phys. Chem., 74, Kluwer Acad. Publ., Dordrecht, 2002, 93–151, arXiv: math.CO/0304010 | DOI | MR | Zbl
[15] Jones A.R., “The structure of the Young symmetrizers for spin representations of the symmetric group. I”, J. Algebra, 205 (1998), 626–660 | DOI | MR | Zbl
[16] Lassalle M., “Jack polynomials and free cumulants”, Adv. Math., 222 (2009), 2227–2269, arXiv: 0802.0448 | DOI | MR | Zbl
[17] Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[18] Matsumoto S., “Polynomiality of shifted Plancherel averages and content evaluations”, Ann. Math. Blaise Pascal, 24 (2017), 55–82, arXiv: 1512.04168 | DOI | MR | Zbl
[19] Nazarov M., “Young's symmetrizers for projective representations of the symmetric group”, Adv. Math., 127 (1997), 190–257 | DOI | MR | Zbl
[20] Sagan B.E., The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, 2nd ed., Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[21] Śniady P., Asymptotics of Jack characters, arXiv: 1506.06361
[22] Wan J., Wang W., “Lectures on spin representation theory of symmetric groups”, Bull. Inst. Math. Acad. Sin. (N.S.), 7 (2012), 91–164, arXiv: 1110.0263 | MR | Zbl