A Spin Analogue of Kerov Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Kerov polynomials describe normalized irreducible characters of the symmetric groups in terms of the free cumulants associated with Young diagrams. We suggest well-suited counterparts of the Kerov polynomials in spin (or projective) representation settings. We show that spin analogues of irreducible characters are polynomials in even free cumulants associated with double diagrams of strict partitions. Moreover, we present a conjecture for the positivity of their coefficients.
Keywords: Kerov polynomials; spin symmetric groups; free cumulants; characters.
@article{SIGMA_2018_14_a52,
     author = {Sho Matsumoto},
     title = {A {Spin} {Analogue} of {Kerov} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a52/}
}
TY  - JOUR
AU  - Sho Matsumoto
TI  - A Spin Analogue of Kerov Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a52/
LA  - en
ID  - SIGMA_2018_14_a52
ER  - 
%0 Journal Article
%A Sho Matsumoto
%T A Spin Analogue of Kerov Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a52/
%G en
%F SIGMA_2018_14_a52
Sho Matsumoto. A Spin Analogue of Kerov Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a52/

[1] Biane P., “Representations of symmetric groups and free probability”, Adv. Math., 138 (1998), 126–181 | DOI | MR | Zbl

[2] Biane P., “Characters of symmetric groups and free cumulants”, Asymptotic Combinatorics with Applications to Mathematical Physics (St. Petersburg, 2001), Lecture Notes in Math., 1815, Springer, Berlin, 2003, 185–200 | DOI | MR | Zbl

[3] De Stavola D., Asymptotic results for representations of finite groups, Ph.D. Thesis, Universität Zürich, 2017, arXiv: 1805.04065

[4] Dołȩga M., Féray V., “Gaussian fluctuations of Young diagrams and structure constants of Jack characters”, Duke Math. J., 165 (2016), 1193–1282, arXiv: 1402.4615 | DOI | MR | Zbl

[5] Dołȩga M., Féray V., Śniady P., “Explicit combinatorial interpretation of {K}erov character polynomials as numbers of permutation factorizations”, Adv. Math., 225 (2010), 81–120, arXiv: 0810.3209 | DOI | MR | Zbl

[6] Dołȩga M., Féray V., Śniady P., “Jack polynomials and orientability generating series of maps”, Sém. Lothar. Combin., 70 (2013), B70j, 50 pp., arXiv: 1301.6531 | MR

[7] Féray V., “Combinatorial interpretation and positivity of {K}erov's character polynomials”, J. Algebraic Combin., 29 (2009), 473–507, arXiv: 0710.5885 | DOI | MR | Zbl

[8] Féray V., Śniady P., “Asymptotics of characters of symmetric groups related to Stanley character formula”, Ann. of Math., 173 (2011), 887–906, arXiv: math.RT/0701051 | DOI | MR | Zbl

[9] Féray V., Śniady P., “Zonal polynomials via Stanley's coordinates and free cumulants”, J. Algebra, 334 (2011), 338–373, arXiv: 1005.0316 | DOI | MR | Zbl

[10] Hoffman P.N., Humphreys J.F., Projective representations of the symmetric groups. $Q$-functions and shifted tableaux, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992 | MR

[11] Hora A., The limit shape problem for ensembles of Young diagrams, Springer Briefs in Mathematical Physics, 17, Springer, Tokyo, 2016 | DOI | MR | Zbl

[12] Ivanov V., “The Gaussian limit for projective characters of large symmetric groups”, J. Math. Sci., 121 (2004), 2330–2344 | DOI | MR

[13] Ivanov V., “Plancherel measure on shifted Young diagrams”, Representation theory, dynamical systems, and asymptotic combinatorics, Amer. Math. Soc. Transl. Ser. 2, 217, Amer. Math. Soc., Providence, RI, 2006, 73–86 | DOI | MR | Zbl

[14] Ivanov V., Olshanski G., “Kerov's central limit theorem for the Plancherel measure on Young diagrams”, Symmetric Functions 2001: Surveys of Developments and Perspectives, NATO Sci. Ser. II Math. Phys. Chem., 74, Kluwer Acad. Publ., Dordrecht, 2002, 93–151, arXiv: math.CO/0304010 | DOI | MR | Zbl

[15] Jones A.R., “The structure of the Young symmetrizers for spin representations of the symmetric group. I”, J. Algebra, 205 (1998), 626–660 | DOI | MR | Zbl

[16] Lassalle M., “Jack polynomials and free cumulants”, Adv. Math., 222 (2009), 2227–2269, arXiv: 0802.0448 | DOI | MR | Zbl

[17] Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR

[18] Matsumoto S., “Polynomiality of shifted Plancherel averages and content evaluations”, Ann. Math. Blaise Pascal, 24 (2017), 55–82, arXiv: 1512.04168 | DOI | MR | Zbl

[19] Nazarov M., “Young's symmetrizers for projective representations of the symmetric group”, Adv. Math., 127 (1997), 190–257 | DOI | MR | Zbl

[20] Sagan B.E., The symmetric group. Representations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, 203, 2nd ed., Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[21] Śniady P., Asymptotics of Jack characters, arXiv: 1506.06361

[22] Wan J., Wang W., “Lectures on spin representation theory of symmetric groups”, Bull. Inst. Math. Acad. Sin. (N.S.), 7 (2012), 91–164, arXiv: 1110.0263 | MR | Zbl