@article{SIGMA_2018_14_a51,
author = {Gaurav Bhatnagar and Christian Krattenthaler},
title = {The {Determinant} of an {Elliptic} {Sylvesteresque} {Matrix}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a51/}
}
Gaurav Bhatnagar; Christian Krattenthaler. The Determinant of an Elliptic Sylvesteresque Matrix. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a51/
[1] Coskun H., Gustafson R.A., “Well-poised Macdonald functions $W_\lambda$ and Jackson coefficients $\omega_\lambda$ on $BC_n$”, Jack, Hall–Littlewood and Macdonald Polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 127–155, arXiv: math.CO/0412153 | DOI | MR | Zbl
[2] Feng H., Krattenthaler C., Xu Y., Best polynomial approximation on the triangle, arXiv: 1711.04756 | MR
[3] Frenkel I.B., Turaev V.G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric function”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR | Zbl
[4] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[5] Krattenthaler C., “Advanced determinant calculus”, Sém. Lothar. Combin., 42 (1999), B42q, 67 pp., arXiv: math.CO/9902004 | MR | Zbl
[6] Krattenthaler C., Schlosser M.J., “The major index generating function of standard Young tableaux of shapes of the form “staircase minus rectangle””, Ramanujan 125, Contemp. Math., 627, Amer. Math. Soc., Providence, RI, 2014, 111–122, arXiv: 1402.4538 | DOI | MR | Zbl
[7] Loos R., “Computing in algebraic extensions”, Computer Algebra, eds. B. Buchberger, G.E. Collins, R. Loos, R. Albrecht, Springer, Vienna, 1983, 173–187 | DOI | MR
[8] Rains E.M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR | Zbl
[9] Rosengren H., “A proof of a multivariable elliptic summation formula conjectured by Warnaar”, $q$-Series with Applications to Combinatorics, Number Theory, and Physics (Urbana, IL, 2000), Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001, 193–202, arXiv: math.CA/0101073 | DOI | MR | Zbl
[10] Rosengren H., “Elliptic hypergeometric functions”, Lectures at OPSF-S6 (College Park, Maryland, July 2016), arXiv: 1608.06161
[11] Rosengren H., Determinantal elliptic Selberg integrals, arXiv: 1803.05186
[12] Schlosser M., “Elliptic enumeration of nonintersecting lattice paths”, J. Combin. Theory Ser. A, 114 (2007), 505–521, arXiv: math.CO/0602260 | DOI | MR | Zbl
[13] Warnaar S.O., “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx., 18 (2002), 479–502, arXiv: math.QA/0001006 | DOI | MR | Zbl