The Determinant of an Elliptic Sylvesteresque Matrix
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We evaluate the determinant of a matrix whose entries are elliptic hypergeometric terms and whose form is reminiscent of Sylvester matrices. A hypergeometric determinant evaluation of a matrix of this type has appeared in the context of approximation theory, in the work of Feng, Krattenthaler and Xu. Our determinant evaluation is an elliptic extension of their evaluation, which has two additional parameters (in addition to the base $q$ and nome $p$ found in elliptic hypergeometric terms). We also extend the evaluation to a formula transforming an elliptic determinant into a multiple of another elliptic determinant. This transformation has two further parameters. The proofs of the determinant evaluation and the transformation formula require an elliptic determinant lemma due to Warnaar, and the application of two $C_n$ elliptic formulas that extend Frenkel and Turaev's $_{10}V_9$ summation formula and $_{12}V_{11}$ transformation formula, results due to Warnaar, Rosengren, Rains, and Coskun and Gustafson.
Keywords: determinant; $C_n$ elliptic hypergeometric series; Sylvester matrix.
@article{SIGMA_2018_14_a51,
     author = {Gaurav Bhatnagar and Christian Krattenthaler},
     title = {The {Determinant} of an {Elliptic} {Sylvesteresque} {Matrix}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a51/}
}
TY  - JOUR
AU  - Gaurav Bhatnagar
AU  - Christian Krattenthaler
TI  - The Determinant of an Elliptic Sylvesteresque Matrix
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a51/
LA  - en
ID  - SIGMA_2018_14_a51
ER  - 
%0 Journal Article
%A Gaurav Bhatnagar
%A Christian Krattenthaler
%T The Determinant of an Elliptic Sylvesteresque Matrix
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a51/
%G en
%F SIGMA_2018_14_a51
Gaurav Bhatnagar; Christian Krattenthaler. The Determinant of an Elliptic Sylvesteresque Matrix. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a51/

[1] Coskun H., Gustafson R.A., “Well-poised Macdonald functions $W_\lambda$ and Jackson coefficients $\omega_\lambda$ on $BC_n$”, Jack, Hall–Littlewood and Macdonald Polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 127–155, arXiv: math.CO/0412153 | DOI | MR | Zbl

[2] Feng H., Krattenthaler C., Xu Y., Best polynomial approximation on the triangle, arXiv: 1711.04756 | MR

[3] Frenkel I.B., Turaev V.G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric function”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR | Zbl

[4] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[5] Krattenthaler C., “Advanced determinant calculus”, Sém. Lothar. Combin., 42 (1999), B42q, 67 pp., arXiv: math.CO/9902004 | MR | Zbl

[6] Krattenthaler C., Schlosser M.J., “The major index generating function of standard Young tableaux of shapes of the form “staircase minus rectangle””, Ramanujan 125, Contemp. Math., 627, Amer. Math. Soc., Providence, RI, 2014, 111–122, arXiv: 1402.4538 | DOI | MR | Zbl

[7] Loos R., “Computing in algebraic extensions”, Computer Algebra, eds. B. Buchberger, G.E. Collins, R. Loos, R. Albrecht, Springer, Vienna, 1983, 173–187 | DOI | MR

[8] Rains E.M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR | Zbl

[9] Rosengren H., “A proof of a multivariable elliptic summation formula conjectured by Warnaar”, $q$-Series with Applications to Combinatorics, Number Theory, and Physics (Urbana, IL, 2000), Contemp. Math., 291, Amer. Math. Soc., Providence, RI, 2001, 193–202, arXiv: math.CA/0101073 | DOI | MR | Zbl

[10] Rosengren H., “Elliptic hypergeometric functions”, Lectures at OPSF-S6 (College Park, Maryland, July 2016), arXiv: 1608.06161

[11] Rosengren H., Determinantal elliptic Selberg integrals, arXiv: 1803.05186

[12] Schlosser M., “Elliptic enumeration of nonintersecting lattice paths”, J. Combin. Theory Ser. A, 114 (2007), 505–521, arXiv: math.CO/0602260 | DOI | MR | Zbl

[13] Warnaar S.O., “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx., 18 (2002), 479–502, arXiv: math.QA/0001006 | DOI | MR | Zbl