Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show how to obtain linear combinations of polynomials in an orthogonal sequence $\{P_n\}_{n\geq 0}$, such as $Q_{n,k}(x)=\sum\limits_{i=0}^k a_{n,i}P_{n-i}(x)$, $a_{n,0}a_{n,k}\neq0$, that characterize quasi-orthogonal polynomials of order $k\le n-1$. The polynomials in the sequence $\{Q_{n,k}\}_{n\geq 0}$ are obtained from $P_{n}$, by making use of parameter shifts. We use an algorithmic approach to find these linear combinations for each family applicable and these equations are used to prove quasi-orthogonality of order $k$. We also determine the location of the extreme zeros of the quasi-orthogonal polynomials with respect to the end points of the interval of orthogonality of the sequence $\{P_n\}_{n\geq 0}$, where possible.
Keywords: classical orthogonal polynomials; quasi-orthogonal polynomials; interlacing of zeros.
@article{SIGMA_2018_14_a50,
     author = {Daniel D. Tcheutia and Alta S. Jooste and Wolfram Koepf},
     title = {Quasi-Orthogonality of {Some} {Hypergeometric} and $q${-Hypergeometric} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a50/}
}
TY  - JOUR
AU  - Daniel D. Tcheutia
AU  - Alta S. Jooste
AU  - Wolfram Koepf
TI  - Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a50/
LA  - en
ID  - SIGMA_2018_14_a50
ER  - 
%0 Journal Article
%A Daniel D. Tcheutia
%A Alta S. Jooste
%A Wolfram Koepf
%T Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a50/
%G en
%F SIGMA_2018_14_a50
Daniel D. Tcheutia; Alta S. Jooste; Wolfram Koepf. Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a50/

[1] Brezinski C., Driver K.A., Redivo-Zaglia M., “Quasi-orthogonality with applications to some families of classical orthogonal polynomials”, Appl. Numer. Math., 48 (2004), 157–168 | DOI | MR | Zbl

[2] Bultheel A., Cruz-Barroso R., Van Barel M., “On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line”, Calcolo, 47 (2010), 21–48 | DOI | MR | Zbl

[3] Chen W.Y.C., Hou Q.-H., Mu Y.-P., “The extended Zeilberger algorithm with parameters”, J. Symbolic Comput., 47 (2012), 643–654, arXiv: 0908.1328 | DOI | MR | Zbl

[4] Chihara T.S., “On quasi-orthogonal polynomials”, Proc. Amer. Math. Soc., 8 (1957), 765–767 | DOI | MR | Zbl

[5] Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl

[6] Dickinson D., “On quasi-orthogonal polynomials”, Proc. Amer. Math. Soc., 12 (1961), 185–194 | DOI | MR | Zbl

[7] Draux A., “On quasi-orthogonal polynomials”, J. Approx. Theory, 62 (1990), 1–14 | DOI | MR | Zbl

[8] Driver K., Jooste A., “Interlacing of zeros of quasi-orthogonal {M}eixner polynomials”, Quaest. Math., 40 (2017), 477–490 | DOI | MR

[9] Driver K., Jordaan K., “Zeros of quasi-orthogonal Jacobi polynomials”, SIGMA, 12 (2016), 042, 13 pp., arXiv: 1510.08599 | DOI | MR | Zbl

[10] Driver K., Muldoon M.E., “Interlacing properties and bounds for zeros of some quasi-orthogonal Laguerre polynomials”, Comput. Methods Funct. Theory, 15 (2015), 645–654 | DOI | MR | Zbl

[11] Driver K., Muldoon M.E., “Bounds for extreme zeros of quasi-orthogonal ultraspherical polynomials”, J. Class. Anal., 9 (2016), 69–78, arXiv: 1602.00044 | DOI | MR

[12] Fejér L., “Mechanische {Q}uadraturen mit positiven Cotesschen Zahlen”, Math. Z., 37 (1933), 287–309 | DOI | MR

[13] Foupouagnigni M., Koepf W., Tcheutia D.D., Njionou Sadjang P., “Representations of $q$-orthogonal polynomials”, J. Symbolic Comput., 47 (2012), 1347–1371 | DOI | MR | Zbl

[14] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[15] Johnston S.J., Jooste A., Jordaan K., “Quasi-orthogonality of some hypergeometric polynomials”, Integral Transforms Spec. Funct., 27 (2016), 111–125 | DOI | MR | Zbl

[16] Jooste A., Jordaan K., Toókos F., “On the zeros of Meixner polynomials”, Numer. Math., 124 (2013), 57–71 | DOI | MR | Zbl

[17] Joulak H., “A contribution to quasi-orthogonal polynomials and associated polynomials”, Appl. Numer. Math., 54 (2005), 65–78 | DOI | MR | Zbl

[18] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[19] Koepf W., Hypergeometric summation. An algorithmic approach to summation and special function identities, Universitext, 2nd ed., Springer, London, 2014 | DOI | MR | Zbl

[20] Koepf W., Schmersau D., “Representations of orthogonal polynomials”, J. Comput. Appl. Math., 90 (1998), 57–94, arXiv: math.CA/9703217 | DOI | MR | Zbl

[21] Marcellán F., Petronilho J., “On the solution of some distributional differential equations: existence and characterizations of the classical moment functionals”, Integral Transform. Spec. Funct., 2 (1994), 185–218 | DOI | MR | Zbl

[22] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., 9, eds. C. Brezinski, L. Gori, A. Ronveaux, Baltzer, Basel, 1991, 95–130 | MR | Zbl

[23] Medem J.C., Álvarez-Nodarse R., Marcellán F., “On the $q$-polynomials: a distributional study”, J. Comput. Appl. Math., 135 (2001), 157–196 | DOI | MR | Zbl

[24] Moak D.S., “The $q$-analogue of the Laguerre polynomials”, J. Math. Anal. Appl., 81 (1981), 20–47 | DOI | MR | Zbl

[25] Riesz M., “Sur le problème des moments. III”, Ark. Mat. Astron. Fys., 17 (1923), 1–52

[26] Shohat J., “On mechanical quadratures, in particular, with positive coefficients”, Trans. Amer. Math. Soc., 42 (1937), 461–496 | DOI | MR

[27] Tcheutia D.D., Jooste A.S., Koepf W., “Mixed recurrence equations and interlacing properties for zeros of sequences of classical $q$-orthogonal polynomials”, Appl. Numer. Math., 125 (2018), 86–102 | DOI | MR | Zbl