@article{SIGMA_2018_14_a50,
author = {Daniel D. Tcheutia and Alta S. Jooste and Wolfram Koepf},
title = {Quasi-Orthogonality of {Some} {Hypergeometric} and $q${-Hypergeometric} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a50/}
}
TY - JOUR AU - Daniel D. Tcheutia AU - Alta S. Jooste AU - Wolfram Koepf TI - Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a50/ LA - en ID - SIGMA_2018_14_a50 ER -
%0 Journal Article %A Daniel D. Tcheutia %A Alta S. Jooste %A Wolfram Koepf %T Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a50/ %G en %F SIGMA_2018_14_a50
Daniel D. Tcheutia; Alta S. Jooste; Wolfram Koepf. Quasi-Orthogonality of Some Hypergeometric and $q$-Hypergeometric Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a50/
[1] Brezinski C., Driver K.A., Redivo-Zaglia M., “Quasi-orthogonality with applications to some families of classical orthogonal polynomials”, Appl. Numer. Math., 48 (2004), 157–168 | DOI | MR | Zbl
[2] Bultheel A., Cruz-Barroso R., Van Barel M., “On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line”, Calcolo, 47 (2010), 21–48 | DOI | MR | Zbl
[3] Chen W.Y.C., Hou Q.-H., Mu Y.-P., “The extended Zeilberger algorithm with parameters”, J. Symbolic Comput., 47 (2012), 643–654, arXiv: 0908.1328 | DOI | MR | Zbl
[4] Chihara T.S., “On quasi-orthogonal polynomials”, Proc. Amer. Math. Soc., 8 (1957), 765–767 | DOI | MR | Zbl
[5] Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl
[6] Dickinson D., “On quasi-orthogonal polynomials”, Proc. Amer. Math. Soc., 12 (1961), 185–194 | DOI | MR | Zbl
[7] Draux A., “On quasi-orthogonal polynomials”, J. Approx. Theory, 62 (1990), 1–14 | DOI | MR | Zbl
[8] Driver K., Jooste A., “Interlacing of zeros of quasi-orthogonal {M}eixner polynomials”, Quaest. Math., 40 (2017), 477–490 | DOI | MR
[9] Driver K., Jordaan K., “Zeros of quasi-orthogonal Jacobi polynomials”, SIGMA, 12 (2016), 042, 13 pp., arXiv: 1510.08599 | DOI | MR | Zbl
[10] Driver K., Muldoon M.E., “Interlacing properties and bounds for zeros of some quasi-orthogonal Laguerre polynomials”, Comput. Methods Funct. Theory, 15 (2015), 645–654 | DOI | MR | Zbl
[11] Driver K., Muldoon M.E., “Bounds for extreme zeros of quasi-orthogonal ultraspherical polynomials”, J. Class. Anal., 9 (2016), 69–78, arXiv: 1602.00044 | DOI | MR
[12] Fejér L., “Mechanische {Q}uadraturen mit positiven Cotesschen Zahlen”, Math. Z., 37 (1933), 287–309 | DOI | MR
[13] Foupouagnigni M., Koepf W., Tcheutia D.D., Njionou Sadjang P., “Representations of $q$-orthogonal polynomials”, J. Symbolic Comput., 47 (2012), 1347–1371 | DOI | MR | Zbl
[14] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[15] Johnston S.J., Jooste A., Jordaan K., “Quasi-orthogonality of some hypergeometric polynomials”, Integral Transforms Spec. Funct., 27 (2016), 111–125 | DOI | MR | Zbl
[16] Jooste A., Jordaan K., Toókos F., “On the zeros of Meixner polynomials”, Numer. Math., 124 (2013), 57–71 | DOI | MR | Zbl
[17] Joulak H., “A contribution to quasi-orthogonal polynomials and associated polynomials”, Appl. Numer. Math., 54 (2005), 65–78 | DOI | MR | Zbl
[18] Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[19] Koepf W., Hypergeometric summation. An algorithmic approach to summation and special function identities, Universitext, 2nd ed., Springer, London, 2014 | DOI | MR | Zbl
[20] Koepf W., Schmersau D., “Representations of orthogonal polynomials”, J. Comput. Appl. Math., 90 (1998), 57–94, arXiv: math.CA/9703217 | DOI | MR | Zbl
[21] Marcellán F., Petronilho J., “On the solution of some distributional differential equations: existence and characterizations of the classical moment functionals”, Integral Transform. Spec. Funct., 2 (1994), 185–218 | DOI | MR | Zbl
[22] Maroni P., “Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques”, Orthogonal Polynomials and their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., 9, eds. C. Brezinski, L. Gori, A. Ronveaux, Baltzer, Basel, 1991, 95–130 | MR | Zbl
[23] Medem J.C., Álvarez-Nodarse R., Marcellán F., “On the $q$-polynomials: a distributional study”, J. Comput. Appl. Math., 135 (2001), 157–196 | DOI | MR | Zbl
[24] Moak D.S., “The $q$-analogue of the Laguerre polynomials”, J. Math. Anal. Appl., 81 (1981), 20–47 | DOI | MR | Zbl
[25] Riesz M., “Sur le problème des moments. III”, Ark. Mat. Astron. Fys., 17 (1923), 1–52
[26] Shohat J., “On mechanical quadratures, in particular, with positive coefficients”, Trans. Amer. Math. Soc., 42 (1937), 461–496 | DOI | MR
[27] Tcheutia D.D., Jooste A.S., Koepf W., “Mixed recurrence equations and interlacing properties for zeros of sequences of classical $q$-orthogonal polynomials”, Appl. Numer. Math., 125 (2018), 86–102 | DOI | MR | Zbl