@article{SIGMA_2018_14_a5,
author = {Eunghyun Lee},
title = {On the {TASEP} with {Second} {Class} {Particles}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a5/}
}
Eunghyun Lee. On the TASEP with Second Class Particles. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a5/
[1] Barraquand G., Corwin I., “The $q$-Hahn asymmetric exclusion process”, Ann. Appl. Probab., 26 (2016), 2304–2356, arXiv: 1501.03445 | DOI | MR | Zbl
[2] Borodin A., Corwin I., Sasamoto T., “From duality to determinants for $q$-TASEP and ASEP”, Ann. Probab., 42 (2014), 2314–2382, arXiv: 1207.5035 | DOI | MR | Zbl
[3] Chatterjee S., Schütz G. M., “Determinant representation for some transition probabilities in the TASEP with second class particles”, J. Stat. Phys., 140 (2010), 900–916, arXiv: 1003.5815 | DOI | MR | Zbl
[4] Johansson K., “Shape fluctuations and random matrices”, Comm. Math. Phys., 209 (2000), 437–476, arXiv: math.CO/9903134 | DOI | MR | Zbl
[5] Kassel C., Turaev V., Braid groups, Graduate Texts in Mathematics, 247, Springer, New York, 2008 | DOI | MR | Zbl
[6] Korhonen M., Lee E., “The transition probability and the probability for the left-most particle's position of the $q$-totally asymmetric zero range process”, J. Math. Phys., 55 (2014), 013301, 15 pp., arXiv: 1308.4769 | DOI | MR | Zbl
[7] Lee E., “The current distribution of the multiparticle hopping asymmetric diffusion model”, J. Stat. Phys., 149 (2012), 50–72, arXiv: 1203.0501 | DOI | MR | Zbl
[8] Lee E., “Some conditional probabilities in the TASEP with second class particles”, J. Math. Phys., 58 (2017), 123301, 11 pp., arXiv: 1707.02539 | DOI | MR | Zbl
[9] Lee E., Wang D., Distributions of a particle's position and their asymptotics in the $q$-deformed totally asymmetric zero range process with site dependent jumping rates, arXiv: 1703.08839
[10] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, 2nd ed., The Clarendon Press, Oxford University Press, New York, 2015 | MR | Zbl
[11] Mountford T., Guiol H., “The motion of a second class particle for the TASEP starting from a decreasing shock profile”, Ann. Appl. Probab., 15 (2005), 1227–1259, arXiv: math.PR/0505216 | DOI | MR | Zbl
[12] Nagao T., Sasamoto T., “Asymmetric simple exclusion process and modified random matrix ensembles”, Nuclear Phys. B, 699 (2004), 487–502, arXiv: cond-mat/0405321 | DOI | MR | Zbl
[13] Povolotsky A. M., “On the integrability of zero-range chipping models with factorized steady states”, J. Phys. A: Math. Theor., 46 (2013), 465205, 25 pp., arXiv: 1308.3250 | DOI | MR | Zbl
[14] Schütz G. M., “Exact solution of the master equation for the asymmetric exclusion process”, J. Stat. Phys., 88 (1997), 427–445, arXiv: cond-mat/9701019 | DOI | MR | Zbl
[15] Tracy C. A., Widom H., “Integral formulas for the asymmetric simple exclusion process”, Comm. Math. Phys., 279 (2008), 815–844, arXiv: 0704.2633 | DOI | MR | Zbl
[16] Tracy C. A., Widom H., “On the distribution of a second-class particle in the asymmetric simple exclusion process”, J. Phys. A: Math. Theor., 42 (2009), 425002, 6 pp., arXiv: 0907.4395 | DOI | MR | Zbl
[17] Tracy C. A., Widom H., “On the asymmetric simple exclusion process with multiple species”, J. Stat. Phys., 150 (2013), 457–470, arXiv: 1105.4906 | DOI | MR | Zbl
[18] Wang D., Waugh D., “The transition probability of the $q$-TAZRP ($q$-bosons) with inhomogeneous jump rates”, SIGMA, 12 (2016), 037, 16 pp., arXiv: 1512.01612 | DOI | MR | Zbl