Evaluation of Certain Hypergeometric Functions over Finite Fields
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an odd prime $p$, let $\phi$ denote the quadratic character of the multiplicative group $\mathbb{F}_p^\times$, where $\mathbb{F}_p$ is the finite field of $p$ elements. In this paper, we will obtain evaluations of the hypergeometric functions $ {}_2F_1\begin{pmatrix} \phi\psi \psi\\ \phi \end{pmatrix};x$, $x\in \mathbb{F}_p$, $x\neq 0, 1$, over $\mathbb{F}_p$ in terms of Hecke character attached to CM elliptic curves for characters $\psi$ of $\mathbb{F}_p^\times$ of order $3$, $4$, $6$, $8$, and $12$.
Keywords: hypergeometric functions over finite fields; character sums; Hecke characters.
@article{SIGMA_2018_14_a49,
     author = {Fang-Ting Tu and Yifan Yang},
     title = {Evaluation of {Certain} {Hypergeometric} {Functions} over {Finite} {Fields}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a49/}
}
TY  - JOUR
AU  - Fang-Ting Tu
AU  - Yifan Yang
TI  - Evaluation of Certain Hypergeometric Functions over Finite Fields
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a49/
LA  - en
ID  - SIGMA_2018_14_a49
ER  - 
%0 Journal Article
%A Fang-Ting Tu
%A Yifan Yang
%T Evaluation of Certain Hypergeometric Functions over Finite Fields
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a49/
%G en
%F SIGMA_2018_14_a49
Fang-Ting Tu; Yifan Yang. Evaluation of Certain Hypergeometric Functions over Finite Fields. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a49/

[1] Ahlgren S., Ono K., “A Gaussian hypergeometric series evaluation and Apéry number congruences”, J. Reine Angew. Math., 518 (2000), 187–212 | DOI | MR | Zbl

[2] Ahlgren S., Ono K., “Modularity of a certain Calabi–Yau threefold”, Monatsh. Math., 129 (2000), 177–190 | DOI | MR | Zbl

[3] Ahlgren S., Ono K., Penniston D., “Zeta functions of an infinite family of $K3$ surfaces”, Amer. J. Math., 124 (2002), 353–368 | DOI | MR | Zbl

[4] Barman R., Kalita G., “Certain values of Gaussian hypergeometric series and a family of algebraic curves”, Int. J. Number Theory, 8 (2012), 945–961, arXiv: 1208.0495 | DOI | MR | Zbl

[5] Barman R., Kalita G., “Elliptic curves and special values of Gaussian hypergeometric series”, J. Number Theory, 133 (2013), 3099–3111 | DOI | MR | Zbl

[6] Berndt B.C., Evans R.J., Williams K.S., Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley Sons, Inc., New York, 1998 | MR | Zbl

[7] Evans R., Greene J., “Clausen's theorem and hypergeometric functions over finite fields”, Finite Fields Appl., 15 (2009), 97–109 | DOI | MR | Zbl

[8] Evans R., Greene J., “Evaluations of hypergeometric functions over finite fields”, Hiroshima Math. J., 39 (2009), 217–235 | MR | Zbl

[9] Evans R., Lam F., “Special values of hypergeometric functions over finite fields”, Ramanujan J., 19 (2009), 151–162 | DOI | MR | Zbl

[10] Frechette S., Ono K., Papanikolas M., “Gaussian hypergeometric functions and traces of Hecke operators”, Int. Math. Res. Not., 2004 (2004), 3233–3262 | DOI | MR | Zbl

[11] Fuselier J.G., Hypergeometric functions over finite fields and relations to modular forms and elliptic curves, Ph.D. Thesis, Texas A University, 2007 | MR

[12] Fuselier J.G., “Hypergeometric functions over ${\mathbb F}_p$ and relations to elliptic curves and modular forms”, Proc. Amer. Math. Soc., 138 (2010), 109–123, arXiv: 0805.2885 | DOI | MR | Zbl

[13] Fuselier J.G., “Traces of Hecke operators in level 1 and Gaussian hypergeometric functions”, Proc. Amer. Math. Soc., 141 (2013), 1871–1881, arXiv: 1109.3362 | DOI | MR | Zbl

[14] Fuselier J.G., Long L., Ramakrishna R., Swisher H., Tu F.-T., Hypergeometric functions over finite fields, arXiv: 1510.02575

[15] Goodson H., “Hypergeometric properties of genus 3 generalized Legendre curves”, J. Number Theory, 186 (2018), 121–136, arXiv: 1705.02404 | DOI | MR

[16] Greene J., “Hypergeometric functions over finite fields”, Trans. Amer. Math. Soc., 301 (1987), 77–101 | DOI | MR | Zbl

[17] Greene J., Stanton D., “A character sum evaluation and Gaussian hypergeometric series”, J. Number Theory, 23 (1986), 136–148 | DOI | MR | Zbl

[18] Hashimoto K.-I., Long L., Yang Y., “Jacobsthal identity for ${\mathbb Q}\big(\sqrt{-2}\big)$”, Forum Math., 24 (2012), 1125–1138, arXiv: 1110.5815 | DOI | MR

[19] Ireland K., Rosen M., A classical introduction to modern number theory, Graduate Texts in Mathematics, 84, 2nd ed., Springer-Verlag, New York, 1990 | DOI | MR | Zbl

[20] Koike M., “Hypergeometric series over finite fields and Apéry numbers”, Hiroshima Math. J., 22 (1992), 461–467 | MR | Zbl

[21] Koike M., “Hypergeometric series and elliptic curves over finite fields”, Sūrikaisekikenkyūsho Kōkyūroku, 843 (1993), 27–35 | MR

[22] Lennon C., “Gaussian hypergeometric evaluations of traces of Frobenius for elliptic curves”, Proc. Amer. Math. Soc., 139 (2011), 1931–1938, arXiv: 1003.4421 | DOI | MR | Zbl

[23] Lennon C., “Trace formulas for Hecke operators, Gaussian hypergeometric functions, and the modularity of a threefold”, J. Number Theory, 131 (2011), 2320–2351, arXiv: 1003.1157 | DOI | MR | Zbl

[24] McCarthy D., Papanikolas M.A., “A finite field hypergeometric function associated to eigenvalues of a Siegel eigenform”, Int. J. Number Theory, 11 (2015), 2431–2450, arXiv: 1205.1006 | DOI | MR | Zbl

[25] Ono K., “Values of Gaussian hypergeometric series”, Trans. Amer. Math. Soc., 350 (1998), 1205–1223 | DOI | MR | Zbl

[26] Salerno A., “Counting points over finite fields and hypergeometric functions”, Funct. Approx. Comment. Math., 49 (2013), 137–157, arXiv: 1201.3335 | DOI | MR | Zbl

[27] Silverman J.H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1986 | DOI | MR | Zbl

[28] Silverman J.H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994 | DOI | MR | Zbl

[29] Weil A., “Jacobi sums as “Grössencharaktere””, Trans. Amer. Math. Soc., 73 (1952), 487–495 | DOI | MR | Zbl