@article{SIGMA_2018_14_a48,
author = {Tomohiro Furukawa and Sanefumi Moriyama},
title = {Jacobi{\textendash}Trudi {Identity} in {Super} {Chern{\textendash}Simons} {Matrix} {Model}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a48/}
}
Tomohiro Furukawa; Sanefumi Moriyama. Jacobi–Trudi Identity in Super Chern–Simons Matrix Model. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a48/
[1] Aganagic M., Dijkgraaf R., Klemm A., Mariño M., Vafa C., “Topological strings and integrable hierarchies”, Comm. Math. Phys., 261 (2006), 451–516, arXiv: hep-th/0312085 | DOI | MR | Zbl
[2] Aharony O., Bergman O., Jafferis D.L., “Fractional M2-branes”, J. High Energy Phys., 2008:11 (2008), 043, 27 pp., arXiv: 0807.4924 | DOI | MR
[3] Aharony O., Bergman O., Jafferis D.L., Maldacena J., “${\mathcal N}=6$ superconformal Chern–Simons-matter theories, M2-branes and their gravity duals”, J. High Energy Phys., 2008:10 (2008), 091, 38 pp., arXiv: 0806.1218 | DOI | MR | Zbl
[4] Alexandrov A., Kazakov V., Leurent S., Tsuboi Z., Zabrodin A., “Classical tau-function for quantum spin chains”, J. High Energy Phys., 2013:9 (2013), 064, 65 pp., arXiv: 1112.3310 | DOI | MR | Zbl
[5] Bonelli G., Grassi A., Tanzini A., Quantum curves and $q$-deformed Painlevé equations, arXiv: 1710.11603
[6] Borodin A., Olshanski G., Strahov E., “Giambelli compatible point processes”, Adv. in Appl. Math., 37 (2006), 209–248, arXiv: math-ph/0505021 | DOI | MR | Zbl
[7] Drukker N., Mariño M., Putrov P., “From weak to strong coupling in ABJM theory”, Comm. Math. Phys., 306 (2011), 511–563, arXiv: 1007.3837 | DOI | MR | Zbl
[8] Drukker N., Trancanelli D., “A supermatrix model for ${\mathcal N}=6$ super Chern–Simons-matter theory”, J. High Energy Phys., 2010:2 (2010), 058, 21 pp., arXiv: 0912.3006 | DOI | MR | Zbl
[9] Fuji H., Hirano S., Moriyama S., “Summing up all genus free energy of ABJM matrix model”, J. High Energy Phys., 2011:8 (2011), 001, 17 pp., arXiv: 1106.4631 | DOI | MR | Zbl
[10] Giambelli G.Z., “Alcune proprietà delle funzioni simmetriche caratteristiche”, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 38 (1903), 823–844 | Zbl
[11] Grassi A., Hatsuda Y., Mariño M., “Quantization conditions and functional equations in ABJ(M) theories”, J. Phys. A: Math. Theor., 49 (2016), 115401, 30 pp., arXiv: 1410.7658 | DOI | MR | Zbl
[12] Harnad J., Lee E., Symmetric polynomials, generalized Jacobi–Trudi identities and $\tau$-functions, arXiv: 1304.0020
[13] Hatsuda Y., Honda M., Moriyama S., Okuyama K., “ABJM Wilson loops in arbitrary representations”, J. High Energy Phys., 2013:10 (2013), 168, 31 pp., arXiv: 1306.4297 | DOI | MR
[14] Hatsuda Y., Honda M., Okuyama K., “Large $N$ non-perturbative effects in ${\mathcal N}=4$ superconformal Chern–Simons theories”, J. High Energy Phys., 2015:9 (2015), 046, 54 pp., arXiv: 1505.07120 | DOI | MR
[15] Hatsuda Y., Mariño M., Moriyama S., Okuyama K., “Non-perturbative effects and the refined topological string”, J. High Energy Phys., 2014:9 (2014), 168, 42 pp., arXiv: 1306.1734 | DOI | MR | Zbl
[16] Hatsuda Y., Moriyama S., Okuyama K., “Instanton bound states in ABJM theory”, J. High Energy Phys., 2013:5 (2013), 054, 23 pp., arXiv: 1301.5184 | DOI | MR
[17] Hatsuda Y., Moriyama S., Okuyama K., “Instanton effects in ABJM theory from Fermi gas approach”, J. High Energy Phys., 2013:1 (2013), 158, 40 pp., arXiv: 1211.1251 | DOI | MR | Zbl
[18] Hatsuda Y., Moriyama S., Okuyama K., “Exact instanton expansion of the ABJM partition function”, Prog. Theor. Exp. Phys., 2015 (2015), 11B104, 35 pp., arXiv: 1507.01678 | DOI | MR | Zbl
[19] Hatsuda Y., Okuyama K., “Exact results for ABJ Wilson loops and open-closed duality”, J. High Energy Phys., 2016:10 (2016), 132, 34 pp., arXiv: 1603.06579 | DOI | MR | Zbl
[20] Honda M., “Exact relations between M2-brane theories with and without orientifolds”, J. High Energy Phys., 2016:6 (2016), 123, 28 pp., arXiv: 1512.04335 | DOI | MR | Zbl
[21] Hosomichi K., Lee K.M., Lee S., Lee S., Park J., “${\mathcal N}=5,6$ superconformal Chern–Simons theories and M2-branes on orbifolds”, J. High Energy Phys., 2008:9 (2008), 002, 24 pp., arXiv: 0806.4977 | DOI | MR | Zbl
[22] Jacobi C.G.J., “De functionibus alternantibus earumque divisione per productum e differentiis elementorum conflatum”, J. Reine Angew. Math., 22 (1841), 360–371 | DOI | MR | Zbl
[23] Jing N., “Rozhkovskaya N., Vertex operators arising from Jacobi–Trudi identities”, Comm. Math. Phys., 346 (2016), 679–701, arXiv: 1411.4725 | DOI | MR | Zbl
[24] Kapustin A., Willett B., Yaakov I., “Exact results for Wilson loops in superconformal Chern–Simons theories with matter”, J. High Energy Phys., 2010:3 (2010), 089, 29 pp., arXiv: 0909.4559 | DOI | MR | Zbl
[25] Kiyoshige K., Moriyama S., “Dualities in ABJM matrix model from closed string viewpoint”, J. High Energy Phys., 2016:11 (2016), 096, 15 pp., arXiv: 1607.06414 | DOI | MR
[26] Kuniba A., Nakanishi T., Suzuki J., “Functional relations in solvable lattice models. I. Functional relations and representation theory”, Internat. J. Modern Phys. A, 9 (1994), 5215–5266, arXiv: hep-th/9309137 | DOI | MR | Zbl
[27] Kuniba A., Ohta Y., Suzuki J., “Quantum Jacobi–Trudi and Giambelli formulae for $U_q\big(B^{(1)}_r\big)$ from the analytic Bethe ansatz”, J. Phys. A: Math. Gen., 28 (1995), 6211–6226, arXiv: hep-th/9506167 | DOI | MR | Zbl
[28] Macdonald I.G., “Schur functions: theme and variations”, Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), Publ. Inst. Rech. Math. Av., 498, University Louis Pasteur, Strasbourg, 1992, 5–39 | MR
[29] Macdonald I.G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[30] Mariño M., Putrov P., “ABJM theory as a Fermi gas”, J. Stat. Mech. Theory Exp., 2012 (2012), P03001, 53 pp., arXiv: 1110.4066 | DOI | MR
[31] Matsuno S., Moriyama S., “ABJ fractional brane from ABJM Wilson loop”, J. High Energy Phys., 2014:3 (2014), 079, 25 pp., arXiv: 1310.8051 | DOI
[32] Matsuno S., Moriyama S., “Giambelli identity in super Chern–Simons matrix model”, J. Math. Phys., 58 (2017), 032301, 12 pp., arXiv: 1603.04124 | DOI | MR | Zbl
[33] Moens E.M., van der Jeugt J., “A determinantal formula for supersymmetric Schur polynomials”, J. Algebraic Combin., 17 (2003), 283–307 | DOI | MR | Zbl
[34] Moriyama S., Nakayama S., Nosaka T., “Instanton effects in rank deformed superconformal Chern–Simons theories from topological strings”, J. High Energy Phys., 2017:8 (2017), 003, 49 pp., arXiv: 1704.04358 | DOI | MR
[35] Moriyama S., Nosaka T., “Partition functions of superconformal Chern–Simons theories from Fermi gas approach”, J. High Energy Phys., 2014:11 (2014), 164, 33 pp., arXiv: 1407.4268 | DOI
[36] Moriyama S., Nosaka T., “ABJM membrane instanton from a pole cancellation mechanism”, Phys. Rev. D, 92 (2015), 026003, 12 pp., arXiv: 1410.4918 | DOI | MR
[37] Moriyama S., Nosaka T., “Exact instanton expansion of superconformal Chern–Simons theories from topological strings”, J. High Energy Phys., 2015:5 (2015), 022, 31 pp., arXiv: 1412.6243 | DOI | MR
[38] Moriyama S., Nosaka T., “Orientifold ABJM matrix model: chiral projections and worldsheet instantons”, J. High Energy Phys., 2016:6 (2016), 068, 19 pp., arXiv: 1603.00615 | DOI | MR
[39] Moriyama S., Nosaka T., Yano K., “Superconformal Chern–Simons theories from del Pezzo geometries”, J. High Energy Phys., 2017:11 (2017), 089, 40 pp., arXiv: 1707.02420 | DOI | MR
[40] Moriyama S., Suyama T., “Instanton effects in orientifold ABJM theory”, J. High Energy Phys., 2016:3 (2016), 034, 19 pp., arXiv: 1511.01660 | DOI
[41] Moriyama S., Suyama T., “Orthosymplectic Chern–Simons matrix model and chirality projection”, J. High Energy Phys., 2016:4 (2016), 142, 19 pp., arXiv: 1601.03846 | DOI | MR
[42] Nakagawa J., Noumi M., Shirakawa M., Yamada Y., “Tableau representation for Macdonald's ninth variation of Schur functions”, Physics and Combinatorics (2000, Nagoya), World Sci. Publ., River Edge, NJ, 2001, 180–195 | DOI | MR | Zbl
[43] Nakai W., Nakanishi T., “Paths and tableaux descriptions of Jacobi–Trudi determinant associated with quantum affine algebra of type $C_n$”, SIGMA, 3 (2007), 078, 20 pp., arXiv: math.QA/0604158 | DOI | MR | Zbl
[44] Okuyama K., “Orientifolding of the ABJ Fermi gas”, J. High Energy Phys., 2016, no. 3, 008, 64 pp., arXiv: 1601.03215 | DOI | MR
[45] Pragacz P., Thorup A., “On a Jacobi–Trudi identity for supersymmetric polynomials”, Adv. Math., 95 (1992), 8–17 | DOI | MR | Zbl
[46] Sato M., “Soliton equations as dynamical systems on an infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, 1981), RIMS Kokyuroku, 439, Kyoto, 1981, 30–46 | Zbl
[47] Tierz M., “Schur polynomials and biorthogonal random matrix ensembles”, J. Math. Phys., 51 (2010), 063509, 9 pp. | DOI | MR | Zbl
[48] Tsuboi Z., “From the quantum Jacobi–Trudi and Giambelli formula to a nonlinear integral equation for thermodynamics of the higher spin Heisenberg model”, J. Phys. A: Math. Gen., 37 (2004), 1747–1758, arXiv: cond-mat/0308333 | DOI | MR | Zbl