@article{SIGMA_2018_14_a47,
author = {Niels Bonneux and Marco Stevens},
title = {Recurrence {Relations} for {Wronskian} {Hermite} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a47/}
}
Niels Bonneux; Marco Stevens. Recurrence Relations for Wronskian Hermite Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a47/
[1] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, D.C., 1972 | MR
[2] Adin R., Roichman Y., “Standard Young tableaux”, Handbook of Enumerative Combinatorics, Discrete Math. Appl., CRC Press, Boca Raton, FL, 2015, 895–974, arXiv: 1408.4497 | MR | Zbl
[3] Andrews G.E., The theory of partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998 | MR | Zbl
[4] Baik J., Deift P., Suidan T., Combinatorics and random matrix theory, Graduate Studies in Mathematics, 172, Amer. Math. Soc., Providence, RI, 2016 | DOI | MR | Zbl
[5] Bonneux N., Kuijlaars A.B.J., “Exceptional Laguerre polynomials”, Stud. Appl. Math. (to appear) , arXiv: 1708.03106 | DOI
[6] Borodin A., Olshanski G., Representations of the infinite symmetric group, Cambridge Studies in Advanced Mathematics, 160, Cambridge University Press, Cambridge, 2017 | DOI | MR
[7] Clarkson P.A., “The fourth Painlevé equation and associated special polynomials”, J. Math. Phys., 44 (2003), 5350–5374 | DOI | MR | Zbl
[8] Clarkson P.A., “Painlevé equations – nonlinear special functions”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 331–411 | DOI | MR | Zbl
[9] Clarkson P.A., “Special polynomials associated with rational solutions of the Painlevé equations and applications to soliton equations”, Comput. Methods Funct. Theory, 6 (2006), 329–401 | DOI | MR | Zbl
[10] Curbera G.P., Durán A.J., Invariant properties for Wronskian type determinants of classical and classical discrete orthogonal polynomials under an involution of sets of positive integers, arXiv: 1612.07530
[11] Durán A.J., “Exceptional Charlier and Hermite orthogonal polynomials”, J. Approx. Theory, 182 (2014), 29–58, arXiv: 1309.1175 | DOI | MR | Zbl
[12] Durán A.J., “Exceptional Meixner and Laguerre orthogonal polynomials”, J. Approx. Theory, 184 (2014), 176–208, arXiv: 1310.4658 | DOI | MR | Zbl
[13] Durán A.J., “Higher order recurrence relation for exceptional Charlier, Meixner, Hermite and Laguerre orthogonal polynomials”, Integral Transforms Spec. Funct., 26 (2015), 357–376, arXiv: 1409.4697 | DOI | MR | Zbl
[14] Durán A.J., “Exceptional Hahn and Jacobi orthogonal polynomials”, J. Approx. Theory, 214 (2017), 9–48, arXiv: 1510.02579 | DOI | MR | Zbl
[15] Felder G., Hemery A.D., Veselov A.P., “Zeros of Wronskians of Hermite polynomials and Young diagrams”, Phys. D, 241 (2012), 2131–2137, arXiv: 1005.2695 | DOI | MR | Zbl
[16] García-Ferrero M.A., Gómez-Ullate D., “Oscillation theorems for the Wronskian of an arbitrary sequence of eigenfunctions of Schrödinger's equation”, Lett. Math. Phys., 105 (2015), 551–573, arXiv: 1408.0883 | DOI | MR | Zbl
[17] Gómez-Ullate D., Grandati Y., Milson R., “Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials”, J. Phys. A: Math. Theor., 47 (2014), 015203, 27 pp., arXiv: 1306.5143 | DOI | MR | Zbl
[18] Gómez-Ullate D., Grandati Y., Milson R., Durfee rectangles and pseudo-Wronskian equivalences for Hermite polynomials, arXiv: 1612.05514
[19] Gómez-Ullate D., Kamran N., Milson R., “An extended class of orthogonal polynomials defined by a Sturm–Liouville problem”, J. Math. Anal. Appl., 359 (2009), 352–367, arXiv: 0807.3939 | DOI | MR | Zbl
[20] Gómez-Ullate D., Kasman A., Kuijlaars A.B.J., Milson R., “Recurrence relations for exceptional Hermite polynomials”, J. Approx. Theory, 204 (2016), 1–16, arXiv: 1506.03651 | DOI | MR | Zbl
[21] Haese-Hill W.A., Hallnäs M.A., Veselov A.P., “Complex exceptional orthogonal polynomials and quasi-invariance”, Lett. Math. Phys., 106 (2016), 583–606, arXiv: 1509.07008 | DOI | MR | Zbl
[22] Kuijlaars A.B.J., Milson R., “Zeros of exceptional Hermite polynomials”, J. Approx. Theory, 200 (2015), 28–39, arXiv: 1412.6364 | DOI | MR | Zbl
[23] Miki H., Tsujimoto S., “A new recurrence formula for generic exceptional orthogonal polynomials”, J. Math. Phys., 56 (2015), 033502, 13 pp., arXiv: 1410.0183 | DOI | MR | Zbl
[24] Noumi M., Yamada Y., “Symmetries in the fourth Painlevé equation and Okamoto polynomials”, Nagoya Math. J., 153 (1999), 53–86, arXiv: q-alg/9708018 | DOI | MR | Zbl
[25] Odake S., Sasaki R., “Infinitely many shape invariant potentials and new orthogonal polynomials”, Phys. Lett. B, 679 (2009), 414–417, arXiv: 0906.0142 | DOI | MR
[26] O'Donnell R., Analysis of Boolean functions, Cambridge University Press, New York, 2014 | DOI | MR | Zbl
[27] Okamoto K., “Studies on the Painlevé equations. III. Second and fourth Painlevé equations, $P_{{\rm II}}$ and $P_{{\rm IV}}$”, Math. Ann., 275 (1986), 221–255 | DOI | MR | Zbl
[28] Stanley R.P., “Differential posets”, J. Amer. Math. Soc., 1 (1988), 919–961 | DOI | MR | Zbl
[29] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR
[30] Van Assche W., Orthogonal polynomials and Painlevé equations, Australian Mathematical Society Lecture Series, 27, Cambridge University Press, Cambridge, 2018 | DOI | MR
[31] Young A., “On quantitative substitutional analysis”, Proc. Lond. Math. Soc., 33 (1901), 97–146 | DOI | MR | Zbl
[32] Young A., “On quantitative substitutional analysis”, Proc. Lond. Math. Soc., 28 (1928), 255–292 | DOI | MR | Zbl