@article{SIGMA_2018_14_a46,
author = {Erik A. van Doorn},
title = {On the {Strong} {Ratio} {Limit} {Property} for {Discrete-Time} {Birth-Death} {Processes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a46/}
}
Erik A. van Doorn. On the Strong Ratio Limit Property for Discrete-Time Birth-Death Processes. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a46/
[1] Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl
[2] van Doorn E.A., Asymptotic period of an aperiodic Markov chain, arXiv: 1712.10199
[3] van Doorn E.A., Schrijner P., “Random walk polynomials and random walk measures”, J. Comput. Appl. Math., 49 (1993), 289–296 | DOI | MR | Zbl
[4] van Doorn E.A., Schrijner P., “Geometric ergodicity and quasi-stationarity in discrete-time birth-death processes”, J. Austral. Math. Soc. Ser. B, 37 (1995), 121–144 | DOI | MR | Zbl
[5] van Doorn E.A., Schrijner P., “Ratio limits and limiting conditional distributions for discrete-time birth-death processes”, J. Math. Anal. Appl., 190 (1995), 263–284 | DOI | MR | Zbl
[6] Karlin S., McGregor J., “Random walks”, Illinois J. Math., 3 (1959), 66–81 | MR | Zbl
[7] Kesten H., “A ratio limit theorem for (sub) Markov chains on $\{1,2,\dots\}$ with bounded jumps”, Adv. in Appl. Probab., 27 (1995), 652–691 | DOI | MR | Zbl
[8] Orey S., “Strong ratio limit property”, Bull. Amer. Math. Soc., 67 (1961), 571–574 | DOI | MR | Zbl
[9] Pruitt W.E., “Strong ratio limit property for $R$-recurrent Markov chains”, Proc. Amer. Math. Soc., 16 (1965), 196–200 | DOI | MR | Zbl
[10] Whitehurst T.A., On random walks and orthogonal polynomials, Ph.D. Thesis, Indiana University, Bloomington, 1978 | MR
[11] Whitehurst T.A., “An application of orthogonal polynomials to random walks”, Pacific J. Math., 99 (1982), 205–213 | DOI | MR | Zbl