On the Strong Ratio Limit Property for Discrete-Time Birth-Death Processes
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A sufficient condition is obtained for a discrete-time birth-death process to possess the strong ratio limit property, directly in terms of the one-step transition probabilities of the process. The condition encompasses all previously known sufficient conditions.
Keywords: (a)periodicity; birth-death process; orthogonal polynomials; random walk measure; ratio limit; transition probability.
@article{SIGMA_2018_14_a46,
     author = {Erik A. van Doorn},
     title = {On the {Strong} {Ratio} {Limit} {Property} for {Discrete-Time} {Birth-Death} {Processes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a46/}
}
TY  - JOUR
AU  - Erik A. van Doorn
TI  - On the Strong Ratio Limit Property for Discrete-Time Birth-Death Processes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a46/
LA  - en
ID  - SIGMA_2018_14_a46
ER  - 
%0 Journal Article
%A Erik A. van Doorn
%T On the Strong Ratio Limit Property for Discrete-Time Birth-Death Processes
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a46/
%G en
%F SIGMA_2018_14_a46
Erik A. van Doorn. On the Strong Ratio Limit Property for Discrete-Time Birth-Death Processes. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a46/

[1] Chihara T.S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl

[2] van Doorn E.A., Asymptotic period of an aperiodic Markov chain, arXiv: 1712.10199

[3] van Doorn E.A., Schrijner P., “Random walk polynomials and random walk measures”, J. Comput. Appl. Math., 49 (1993), 289–296 | DOI | MR | Zbl

[4] van Doorn E.A., Schrijner P., “Geometric ergodicity and quasi-stationarity in discrete-time birth-death processes”, J. Austral. Math. Soc. Ser. B, 37 (1995), 121–144 | DOI | MR | Zbl

[5] van Doorn E.A., Schrijner P., “Ratio limits and limiting conditional distributions for discrete-time birth-death processes”, J. Math. Anal. Appl., 190 (1995), 263–284 | DOI | MR | Zbl

[6] Karlin S., McGregor J., “Random walks”, Illinois J. Math., 3 (1959), 66–81 | MR | Zbl

[7] Kesten H., “A ratio limit theorem for (sub) Markov chains on $\{1,2,\dots\}$ with bounded jumps”, Adv. in Appl. Probab., 27 (1995), 652–691 | DOI | MR | Zbl

[8] Orey S., “Strong ratio limit property”, Bull. Amer. Math. Soc., 67 (1961), 571–574 | DOI | MR | Zbl

[9] Pruitt W.E., “Strong ratio limit property for $R$-recurrent Markov chains”, Proc. Amer. Math. Soc., 16 (1965), 196–200 | DOI | MR | Zbl

[10] Whitehurst T.A., On random walks and orthogonal polynomials, Ph.D. Thesis, Indiana University, Bloomington, 1978 | MR

[11] Whitehurst T.A., “An application of orthogonal polynomials to random walks”, Pacific J. Math., 99 (1982), 205–213 | DOI | MR | Zbl