Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The self-dual spaces of polynomials are related to Bethe vectors in the Gaudin model associated to the Lie algebras of types B and C. In this paper, we give lower bounds for the numbers of real self-dual spaces in intersections of Schubert varieties related to osculating flags in the Grassmannian. The higher Gaudin Hamiltonians are self-adjoint with respect to a nondegenerate indefinite Hermitian form. Our bound comes from the computation of the signature of this form.
Keywords: real Schubert calculus; self-dual spaces; Bethe ansatz; Gaudin model.
@article{SIGMA_2018_14_a45,
     author = {Kang Lu},
     title = {Lower {Bounds} for {Numbers} of {Real} {Self-Dual} {Spaces} in {Problems} of {Schubert} {Calculus}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a45/}
}
TY  - JOUR
AU  - Kang Lu
TI  - Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a45/
LA  - en
ID  - SIGMA_2018_14_a45
ER  - 
%0 Journal Article
%A Kang Lu
%T Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a45/
%G en
%F SIGMA_2018_14_a45
Kang Lu. Lower Bounds for Numbers of Real Self-Dual Spaces in Problems of Schubert Calculus. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a45/

[1] Borisov L., Mukhin E., “Self-self-dual spaces of polynomials”, Adv. Math., 190 (2005), 77–118, arXiv: math.QA/0308128 | DOI | MR | Zbl

[2] Eremenko A., Gabrielov A., “Degrees of real Wronski maps”, Discrete Comput. Geom., 28 (2002), 331–347, arXiv: math.AG/0108133 | DOI | MR | Zbl

[3] Feigin B., Frenkel E., Reshetikhin N., “Gaudin model, Bethe ansatz and critical level”, Comm. Math. Phys., 166 (1994), 27–62, arXiv: hep-th/9402022 | DOI | MR | Zbl

[4] Frobenius F., “Über die Charaktere der symmetrischen Gruppe”, König. Preuss. Akad. Wiss. Berlin, 1900, 516–534 ; reprinted in: Gessamelte Abhandlungen, v. 3, Springer-Verlag, Berlin–New York, 1968, 148–166 | DOI | Zbl

[5] Hein N., Hillar C. J., Sottile F., “Lower bounds in real Schubert calculus”, São Paulo J. Math. Sci., 7 (2013), 33–58, arXiv: 1308.4381 | DOI | MR | Zbl

[6] Hein N., Sottile F., Beyond the Shapiro conjecture and Eremenko–Gabrielov lower bounds, Lower Bounds Experimental Project, http://www.math.tamu.edu/s̃ecant/lowerBounds/lowerBounds.php

[7] Hein N., Sottile F., Zelenko I., “A congruence modulo four in real Schubert calculus”, J. Reine Angew. Math., 714 (2016), 151–174, arXiv: 1211.7160 | DOI | MR | Zbl

[8] Lu K., Mukhin E., “On the Gaudin model of type ${\rm G}_2$”, Commun. Contemp. Math. (to appear) , arXiv: 1711.02511 | DOI

[9] Lu K., Mukhin E., Varchenko A., “On the Gaudin model associated to Lie algebras of classical types”, J. Math. Phys., 57 (2016), 101703, 23 pp., arXiv: 1512.08524 | DOI | MR | Zbl

[10] Lu K., Mukhin E., Varchenko A., “Self-dual Grassmannian, Wronski map, and representations of $\mathfrak{gl}_N$, ${\mathfrak{sp}}_{2r}$, ${\mathfrak{so}}_{2r+1}$”, Pure Appl. Math. Q (to appear) , arXiv: 1705.02048

[11] Molev A., “Feigin–Frenkel center in types $B$, $C$ and $D$”, Invent. Math., 191 (2013), 1–34, arXiv: 1105.2341 | DOI | MR | Zbl

[12] Molev A., Mukhin E., “Eigenvalues of {B}ethe vectors in the Gaudin model”, Theoret. and Math. Phys., 192 (2017), 1258–1281, arXiv: 1506.01884 | DOI | MR | Zbl

[13] Mukhin E., Tarasov V., “Lower bounds for numbers of real solutions in problems of Schubert calculus”, Acta Math., 217 (2016), 177–193, arXiv: 1404.7194 | DOI | MR | Zbl

[14] Mukhin E., Tarasov V., Varchenko A., “The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz”, Ann. of Math., 170 (2009), 863–881, arXiv: math.AG/0512299 | DOI | MR | Zbl

[15] Mukhin E., Tarasov V., Varchenko A., “Schubert calculus and representations of the general linear group”, J. Amer. Math. Soc., 22 (2009), 909–940, arXiv: 0711.4079 | DOI | MR | Zbl

[16] Mukhin E., Varchenko A., “Critical points of master functions and flag varieties”, Commun. Contemp. Math., 6 (2004), 111–163, arXiv: math.QA/0209017 | DOI | MR | Zbl

[17] Pontrjagin L., “Hermitian operators in spaces with indefinite metric”, Bull. Acad. Sci. URSS. Sér. Math., 8 (1944), 243–280 | MR

[18] Rybnikov L., A proof of the Gaudin Bethe Ansatz conjecture, arXiv: 1608.04625

[19] Soprunova E., Sottile F., “Lower bounds for real solutions to sparse polynomial systems”, Adv. Math., 204 (2006), 116–151, arXiv: math.AG/0409504 | DOI | MR | Zbl

[20] Sottile F., “Frontiers of reality in Schubert calculus”, Bull. Amer. Math. Soc., 47 (2010), 31–71, arXiv: 0907.1847 | DOI | MR | Zbl