A $\tau$-Tilting Approach to Dissections of Polygons
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that any accordion complex associated to a dissection of a convex polygon is isomorphic to the support $\tau$-tilting simplicial complex of an explicit finite dimensional algebra. To this end, we prove a property of some induced subcomplexes of support $\tau$-tilting simplicial complexes of finite dimensional algebras.
Keywords: dissections of polygons; accordion complexes; $\tau$-tilting theory; representations of finite dimensional algebras; $\mathbf{g}$-vectors.
@article{SIGMA_2018_14_a44,
     author = {Vincent Pilaud and Pierre-Guy Plamondon and Salvatore Stella},
     title = {A $\tau${-Tilting} {Approach} to {Dissections} of {Polygons}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a44/}
}
TY  - JOUR
AU  - Vincent Pilaud
AU  - Pierre-Guy Plamondon
AU  - Salvatore Stella
TI  - A $\tau$-Tilting Approach to Dissections of Polygons
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a44/
LA  - en
ID  - SIGMA_2018_14_a44
ER  - 
%0 Journal Article
%A Vincent Pilaud
%A Pierre-Guy Plamondon
%A Salvatore Stella
%T A $\tau$-Tilting Approach to Dissections of Polygons
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a44/
%G en
%F SIGMA_2018_14_a44
Vincent Pilaud; Pierre-Guy Plamondon; Salvatore Stella. A $\tau$-Tilting Approach to Dissections of Polygons. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a44/

[1] Adachi T., Iyama O., Reiten I., “$\tau$-tilting theory”, Compos. Math., 150 (2014), 415–452, arXiv: 1210.1036 | DOI | MR | Zbl

[2] Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, v. 1, London Mathematical Society Student Texts, 65, Techniques of representation theory, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl

[3] Buan A. B., Marsh R., Reineke M., Reiten I., Todorov G., “Tilting theory and cluster combinatorics”, Adv. Math., 204 (2006), 572–618, arXiv: math.RT/0402054 | DOI | MR | Zbl

[4] Butler M. C.R., Ringel C. M., “Auslander–{R}eiten sequences with few middle terms and applications to string algebras”, Comm. Algebra, 15 (1987), 145–179 | DOI | MR | Zbl

[5] Caldero P., Chapoton F., Schiffler R., “Quivers with relations arising from clusters ($A_n$ case)”, Trans. Amer. Math. Soc., 358 (2006), 1347–1364 | DOI | MR | Zbl

[6] Chapoton F., “Stokes posets and serpent nests”, Discrete Math. Theor. Comput. Sci., 18 (2016), 18, 30 pp., arXiv: 1505.05990 | MR | Zbl

[7] David-Roesler L., “Derived equivalence of surface algebras in genus 0 via graded equivalence”, Algebr. Represent. Theory, 17 (2014), 1–30, arXiv: 11111.4657 | DOI | MR | Zbl

[8] David-Roesler L., Schiffler R., “Algebras from surfaces without punctures”, J. Algebra, 350 (2012), 218–244, arXiv: 1103.4357 | DOI | MR | Zbl

[9] Dehy R., Keller B., “On the combinatorics of rigid objects in 2-Calabi–Yau categories”, Int. Math. Res. Not., 2008, 2008, rnn029, 17 pp., arXiv: 0709.0882 | DOI | MR | Zbl

[10] Garver A., McConville T., Oriented flip graphs and noncrossing tree partitions, arXiv: 1604.06009

[11] Keller B., Vossieck D., “Aisles in derived categories”, Bull. Soc. Math. Belg. Sér. A, 40 (1988), 239–253 | MR | Zbl

[12] Manneville T., Pilaud V., Geometric realizations of the accordion complex of a dissection, arXiv: 1703.09953

[13] Palu Y., Pilaud V., Plamondon P.-G., Non-kissing complexes and tau-tilting for gentle algebras, arXiv: 1707.07574

[14] Stasheff J. D., “Homotopy associativity of $H$-spaces. I”, Trans. Amer. Math. Soc., 108 (1963), 275–292 | DOI | MR | Zbl

[15] Stasheff J. D., “Homotopy associativity of $H$-spaces. II”, Trans. Amer. Math. Soc., 108 (1963), 293–312 | DOI | MR | Zbl

[16] Tamari D., Monoïdes préordonnés et chaînes de Malcev, Ph.D. Thesis, Université de Paris, 1951 | MR