@article{SIGMA_2018_14_a44,
author = {Vincent Pilaud and Pierre-Guy Plamondon and Salvatore Stella},
title = {A $\tau${-Tilting} {Approach} to {Dissections} of {Polygons}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a44/}
}
TY - JOUR AU - Vincent Pilaud AU - Pierre-Guy Plamondon AU - Salvatore Stella TI - A $\tau$-Tilting Approach to Dissections of Polygons JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a44/ LA - en ID - SIGMA_2018_14_a44 ER -
Vincent Pilaud; Pierre-Guy Plamondon; Salvatore Stella. A $\tau$-Tilting Approach to Dissections of Polygons. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a44/
[1] Adachi T., Iyama O., Reiten I., “$\tau$-tilting theory”, Compos. Math., 150 (2014), 415–452, arXiv: 1210.1036 | DOI | MR | Zbl
[2] Assem I., Simson D., Skowroński A., Elements of the representation theory of associative algebras, v. 1, London Mathematical Society Student Texts, 65, Techniques of representation theory, Cambridge University Press, Cambridge, 2006 | DOI | MR | Zbl
[3] Buan A. B., Marsh R., Reineke M., Reiten I., Todorov G., “Tilting theory and cluster combinatorics”, Adv. Math., 204 (2006), 572–618, arXiv: math.RT/0402054 | DOI | MR | Zbl
[4] Butler M. C.R., Ringel C. M., “Auslander–{R}eiten sequences with few middle terms and applications to string algebras”, Comm. Algebra, 15 (1987), 145–179 | DOI | MR | Zbl
[5] Caldero P., Chapoton F., Schiffler R., “Quivers with relations arising from clusters ($A_n$ case)”, Trans. Amer. Math. Soc., 358 (2006), 1347–1364 | DOI | MR | Zbl
[6] Chapoton F., “Stokes posets and serpent nests”, Discrete Math. Theor. Comput. Sci., 18 (2016), 18, 30 pp., arXiv: 1505.05990 | MR | Zbl
[7] David-Roesler L., “Derived equivalence of surface algebras in genus 0 via graded equivalence”, Algebr. Represent. Theory, 17 (2014), 1–30, arXiv: 11111.4657 | DOI | MR | Zbl
[8] David-Roesler L., Schiffler R., “Algebras from surfaces without punctures”, J. Algebra, 350 (2012), 218–244, arXiv: 1103.4357 | DOI | MR | Zbl
[9] Dehy R., Keller B., “On the combinatorics of rigid objects in 2-Calabi–Yau categories”, Int. Math. Res. Not., 2008, 2008, rnn029, 17 pp., arXiv: 0709.0882 | DOI | MR | Zbl
[10] Garver A., McConville T., Oriented flip graphs and noncrossing tree partitions, arXiv: 1604.06009
[11] Keller B., Vossieck D., “Aisles in derived categories”, Bull. Soc. Math. Belg. Sér. A, 40 (1988), 239–253 | MR | Zbl
[12] Manneville T., Pilaud V., Geometric realizations of the accordion complex of a dissection, arXiv: 1703.09953
[13] Palu Y., Pilaud V., Plamondon P.-G., Non-kissing complexes and tau-tilting for gentle algebras, arXiv: 1707.07574
[14] Stasheff J. D., “Homotopy associativity of $H$-spaces. I”, Trans. Amer. Math. Soc., 108 (1963), 275–292 | DOI | MR | Zbl
[15] Stasheff J. D., “Homotopy associativity of $H$-spaces. II”, Trans. Amer. Math. Soc., 108 (1963), 293–312 | DOI | MR | Zbl
[16] Tamari D., Monoïdes préordonnés et chaînes de Malcev, Ph.D. Thesis, Université de Paris, 1951 | MR