@article{SIGMA_2018_14_a43,
author = {Paul Terwilliger},
title = {The $q${-Onsager} {Algebra} and the {Universal} {Askey{\textendash}Wilson} {Algebra}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a43/}
}
Paul Terwilliger. The $q$-Onsager Algebra and the Universal Askey–Wilson Algebra. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a43/
[1] Alperin R. C., “Notes: ${\rm PSL}_2(Z) = {\mathbb Z}_2 \star {\mathbb Z}_3$”, Amer. Math. Monthly, 100 (1993), 385–386 | DOI | MR | Zbl
[2] Alperin R. C., “The modular tree of Pythagoras”, Amer. Math. Monthly, 112 (2005), 807–816, arXiv: math.HO/0010281 | DOI | MR | Zbl
[3] Baseilhac P., “An integrable structure related with tridiagonal algebras”, Nuclear Phys. B, 705 (2005), 605–619, arXiv: math-ph/0408025 | DOI | MR | Zbl
[4] Baseilhac P., “Deformed Dolan–Grady relations in quantum integrable models”, Nuclear Phys. B, 709 (2005), 491–521, arXiv: hep-th/0404149 | DOI | MR | Zbl
[5] Baseilhac P., “A family of tridiagonal pairs and related symmetric functions”, J. Phys. A: Math. Gen., 39 (2006), 11773–11791, arXiv: math-ph/0604035 | DOI | MR | Zbl
[6] Baseilhac P., “The $q$-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach”, Nuclear Phys. B, 754 (2006), 309–328, arXiv: math-ph/0604036 | DOI | MR | Zbl
[7] Baseilhac P., Belliard S., An attractive basis for the $q$-Onsager algebra, arXiv: 1704.02950
[8] Baseilhac P., Belliard S., “Generalized $q$-Onsager algebras and boundary affine Toda field theories”, Lett. Math. Phys., 93 (2010), 213–228, arXiv: 0906.1215 | DOI | MR | Zbl
[9] Baseilhac P., Belliard S., “The half-infinite $XXZ$ chain in Onsager's approach”, Nuclear Phys. B, 873 (2013), 550–584, arXiv: 1211.6304 | DOI | MR | Zbl
[10] Baseilhac P., Koizumi K., “A deformed analogue of Onsager's symmetry in the $XXZ$ open spin chain”, J. Stat. Mech. Theory Exp., 2005 (2005), P10005, 15 pp., arXiv: hep-th/0507053 | DOI | MR
[11] Baseilhac P., Koizumi K., “A new (in)finite-dimensional algebra for quantum integrable models”, Nuclear Phys. B, 720 (2005), 325–347, arXiv: math-ph/0503036 | DOI | MR | Zbl
[12] Baseilhac P., Koizumi K., “Exact spectrum of the $XXZ$ open spin chain from the $q$-Onsager algebra representation theory”, J. Stat. Mech. Theory Exp., 2007 (2007), P09006, 27 pp., arXiv: hep-th/0703106 | DOI | MR
[13] Baseilhac P., Kolb S., Braid group action and root vectors for the $q$-Onsager algebra, arXiv: 1706.08747
[14] Baseilhac P., Shigechi K., “A new current algebra and the reflection equation”, Lett. Math. Phys., 92 (2010), 47–65, arXiv: 0906.1482 | DOI | MR | Zbl
[15] Baseilhac P., Vu T.T., “Analogues of Lusztig's higher order relations for the $q$-Onsager algebra”, J. Math. Phys., 55 (2014), 081707, 21 pp., arXiv: 1312.3433 | DOI | MR | Zbl
[16] Damiani I., “A basis of type Poincaré–Birkhoff–Witt for the quantum algebra of $\widehat{\rm sl}(2)$”, J. Algebra, 161 (1993), 291–310 | DOI | MR | Zbl
[17] Dolan L., Grady M., “Conserved charges from self-duality”, Phys. Rev. D, 25 (1982), 1587–1604 | DOI | MR
[18] Huang H.-W., “Finite-dimensional irreducible modules of the universal Askey–Wilson algebra”, Comm. Math. Phys., 340 (2015), 959–984, arXiv: 1210.1740 | DOI | MR | Zbl
[19] Ito T., Nomura K., Terwilliger P., “A classification of sharp tridiagonal pairs”, Linear Algebra Appl., 435 (2011), 1857–1884, arXiv: 1001.1812 | DOI | MR | Zbl
[20] Ito T., Tanabe K., Terwilliger P., “Some algebra related to $P$- and $Q$-polynomial association schemes”, Codes and Association Schemes (Piscataway, NJ, 1999), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., 56, Amer. Math. Soc., Providence, RI, 2001, 167–192, arXiv: math.CO/0406556 | DOI | MR | Zbl
[21] Ito T., Terwilliger P., “Tridiagonal pairs of $q$-Racah type”, J. Algebra, 322 (2009), 68–93, arXiv: 0807.0271 | DOI | MR | Zbl
[22] Ito T., Terwilliger P., “The augmented tridiagonal algebra”, Kyushu J. Math., 64 (2010), 81–144, arXiv: 0807.3990 | DOI | MR | Zbl
[23] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[24] Mason J. C., Handscomb D. C., Chebyshev polynomials, Chapman Hall/CRC, Boca Raton, FL, 2003 | MR | Zbl
[25] Onsager L., “Crystal statistics. I. A two-dimensional model with an order-disorder transition”, Phys. Rev., 65 (1944), 117–149 | DOI | MR | Zbl
[26] Perk J. H. H., “Star-triangle equations, quantum Lax pairs, and higher genus curves”, Theta Functions – Bowdoin 1987 (Brunswick, ME, 1987), v. 1, Proc. Sympos. Pure Math., 49, Amer. Math. Soc., Providence, RI, 1989, 341–354 | DOI | MR
[27] Terwilliger P., “The subconstituent algebra of an association scheme. III”, J. Algebraic Combin., 2 (1993), 177–210 | DOI | MR | Zbl
[28] Terwilliger P., “Two linear transformations each tridiagonal with respect to an eigenbasis of the other”, Linear Algebra Appl., 330 (2001), 149–203, arXiv: math.RA/0406555 | DOI | MR | Zbl
[29] Terwilliger P., “Two relations that generalize the $q$-Serre relations and the Dolan–Grady relations”, Physics and Combinatorics (Nagoya, 1999), World Sci. Publ., River Edge, NJ, 2001, 377–398, arXiv: math.QA/0307016 | DOI | MR | Zbl
[30] Terwilliger P., “An algebraic approach to the Askey scheme of orthogonal polynomials”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 255–330, arXiv: math.QA/0408390 | DOI | MR | Zbl
[31] Terwilliger P., “The universal Askey–Wilson algebra”, SIGMA, 7 (2011), 069, 24 pp., arXiv: 1104.2813 | DOI | MR | Zbl
[32] Terwilliger P., “The $q$-{O}nsager algebra and the positive part of $U_q(\widehat{\mathfrak{sl}}_2)$”, Linear Algebra Appl., 521 (2017), 19–56, arXiv: 1506.08666 | DOI | MR | Zbl
[33] Terwilliger P., Vidunas R., “Leonard pairs and the Askey–Wilson relations”, J. Algebra Appl., 3 (2004), 411–426, arXiv: math.QA/0305356 | DOI | MR | Zbl
[34] Zhedanov A. S., ““Hidden symmetry” of Askey–Wilson polynomials”, Theoret. and Math. Phys., 89 (1991), 1146–1157 | DOI | MR | Zbl