@article{SIGMA_2018_14_a42,
author = {Arash Arabi Ardehali},
title = {The {Hyperbolic} {Asymptotics} of {Elliptic} {Hypergeometric} {Integrals} {Arising} in {Supersymmetric} {Gauge} {Theory}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a42/}
}
TY - JOUR AU - Arash Arabi Ardehali TI - The Hyperbolic Asymptotics of Elliptic Hypergeometric Integrals Arising in Supersymmetric Gauge Theory JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a42/ LA - en ID - SIGMA_2018_14_a42 ER -
%0 Journal Article %A Arash Arabi Ardehali %T The Hyperbolic Asymptotics of Elliptic Hypergeometric Integrals Arising in Supersymmetric Gauge Theory %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a42/ %G en %F SIGMA_2018_14_a42
Arash Arabi Ardehali. The Hyperbolic Asymptotics of Elliptic Hypergeometric Integrals Arising in Supersymmetric Gauge Theory. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a42/
[1] Aharony O., Razamat S. S., Seiberg N., Willett B., “$3d$ dualities from $4d$ dualities”, J. High Energy Phys., 2013:7 (2013), 149, 70 pp., arXiv: 1305.3924 | DOI | MR | Zbl
[2] Ardehali A. A., “High-temperature asymptotics of supersymmetric partition functions”, J. High Energy Phys., 2016:7 (2016), 025, 61 pp., arXiv: 1512.03376 | DOI | MR
[3] Ardehali A. A., High-temperature asymptotics of the $4d$ superconformal index, Ph.D. Thesis, University of Michigan, 2016, arXiv: 1605.06100
[4] Ardehali A. A., Liu J. T., Szepietowski P., “High-temperature expansion of supersymmetric partition functions”, J. High Energy Phys., 2015:7 (2015), 113, 28 pp., arXiv: 1502.07737 | DOI | MR
[5] Assel B., Cassani D., Martelli D., “Localization on Hopf surfaces”, J. High Energy Phys., 2014:8 (2014), 123, 56 pp., arXiv: 1405.5144 | DOI | MR
[6] Beem C., Gadde A., “The $\mathcal{N}=1$ superconformal index for class $\mathcal{S}$ fixed points”, J. High Energy Phys., 2014:4 (2014), 036, 28 pp., arXiv: 1212.1467 | DOI | MR
[7] Bourdier J., Drukker N., Felix J., “The exact Schur index of ${\mathcal N}=4$ SYM”, J. High Energy Phys., 2015:11 (2015), 210, 10 pp., arXiv: 1507.08659 | DOI | MR
[8] Brünner F., Regalado D., Spiridonov V. P., “Supersymmetric Casimir energy and ${\rm SL}(3,{\mathbb Z})$ transformations”, J. High Energy Phys., 2017:7 (2017), 041, 21 pp., arXiv: 1611.03831 | DOI | MR
[9] Brünner F., Spiridonov V. P., “$4d$ $\mathcal{N}=1$ quiver gauge theories and the $A_n$ Bailey lemma”, J. High Energy Phys., 2018:3 (2018), 105, 30 pp., arXiv: 1712.07018 | DOI | MR
[10] van de Bult F. J., Hyperbolic hypergeometric functions, Ph.D. Thesis, University of Amsterdam, 2007 | MR
[11] Cardy J. L., “Operator content of two-dimensional conformally invariant theories”, Nuclear Phys. B, 270 (1986), 186–204 | DOI | MR | Zbl
[12] Di Pietro L., Honda M., “Cardy formula for $4d$ {SUSY} theories and localization”, J. High Energy Phys., 2017:4 (2017), 055, 35 pp., arXiv: 1611.00380 | DOI | MR
[13] Di Pietro L., Komargoski Z., “Cardy formulae for SUSY theories in $d=4$ and $d=6$”, J. High Energy Phys., 2014:12 (2014), 031, 28 pp., arXiv: 1407.6061 | DOI
[14] van Diejen J. F., Spiridonov V. P., “An elliptic Macdonald–Morris conjecture and multiple modular hypergeometric sums”, Math. Res. Lett., 7 (2000), 729–746 | DOI | MR | Zbl
[15] van Diejen J. F., Spiridonov V. P., “Elliptic Selberg integrals”, Int. Math. Res. Not., 2001 (2001), 1083–1110 | DOI | MR | Zbl
[16] van Diejen J. F., Spiridonov V. P., “Unit circle elliptic beta integrals”, Ramanujan J., 10 (2005), 187–204, arXiv: math.CA/0309279 | DOI | MR | Zbl
[17] Dolan F. A., Osborn H., “Applications of the superconformal index for protected operators and $q$-hypergeometric identities to ${\mathcal N}=1$ dual theories”, Nuclear Phys. B, 818 (2009), 137–178, arXiv: 0801.4947 | DOI | MR | Zbl
[18] Dolan F. A.H., Spiridonov V. P., Vartanov G. S., “From $4{\rm d}$ superconformal indices to $3{\rm d}$ partition functions”, Phys. Lett. B, 704 (2011), 234–241, arXiv: 1104.1787 | DOI | MR
[19] Faddeev L. D., Kashaev R. M., Volkov A. Yu., “Strongly coupled quantum discrete Liouville theory. I. Algebraic approach and duality”, Comm. Math. Phys., 219 (2001), 199–219, arXiv: hep-th/0006156 | DOI | MR | Zbl
[20] Felder G., Varchenko A., “The elliptic gamma function and ${\rm SL}(3,Z)\ltimesZ^3$”, Adv. Math., 156 (2000), 44–76, arXiv: math.QA/9907061 | DOI | MR | Zbl
[21] Gadde A., Pomoni E., Rastelli L., Razamat S. S., “$S$-duality and $2d$ topological QFT”, J. High Energy Phys., 2010:3 (2010), 032, 22 pp., arXiv: 0910.2225 | DOI | MR | Zbl
[22] Gadde A., Yan W., “Reducing the $4d$ index to the $S^3$ partition function”, J. High Energy Phys., 2012:12 (2012), 003, 11 pp., arXiv: 1104.2592 | DOI | MR
[23] Hwang C., Lee S., Yi P., Holonomy saddles and supersymmetry, arXiv: 1801.05460
[24] Imamura Y., Relation between the $4d$ superconformal index and the $S^3$ partition function,, J. High Energy Phys., 2011:9 (2011), 133, 19 pp., arXiv: . 1104.4482 | DOI | MR | Zbl
[25] Intriligator K., Wecht B., “The exact superconformal $R$-symmetry maximizes $a$”, Nuclear Phys. B, 667 (2003), 183–200, arXiv: hep-th/0304128 | DOI | MR | Zbl
[26] Kels A. P., Yamazaki M., “Elliptic hypergeometric sum/integral transformations and supersymmetric lens index”, SIGMA, 14 (2018), 013, 29 pp., arXiv: 1704.03159 | DOI | MR | Zbl
[27] Kinney J., Maldacena J., Minwalla S., Raju S., “An index for 4 dimensional super conformal theories”, Comm. Math. Phys., 275 (2007), 209–254, arXiv: hep-th/0510251 | DOI | MR | Zbl
[28] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type $BC$”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | DOI | MR | Zbl
[29] Kutasov D., Lin J., ${\mathcal N} = 1$ duality and the superconformal index, arXiv: 1402.5411
[30] Maldacena J., “The large $N$ limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2 (1998), 231–252, arXiv: hep-th/9711200 | DOI | MR | Zbl
[31] Narukawa A., “The modular properties and the integral representations of the multiple elliptic gamma functions”, Adv. Math., 189 (2004), 247–267, arXiv: math.QA/0306164 | DOI | MR | Zbl
[32] Niarchos V., “Seiberg dualities and the $3d/4d$ connection”, J. High Energy Phys., 2012:7 (2012), 075, 19 pp., arXiv: 1205.2086 | DOI | MR
[33] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CA/0402113 | DOI | MR | Zbl
[34] Rains E. M., “Elliptic hypergeometric integrals”, mPIM, Oberseminar (Bonn, July 24, 2008) https://www.hcm.uni-bonn.de/fileadmin/user_upload/Ellipticintegrablesystems/Rains-Ober.pdf
[35] Rains E. M., “Limits of elliptic hypergeometric integrals”, Ramanujan J., 18 (2009), 257–306, arXiv: math.CA/0607093 | DOI | MR | Zbl
[36] Rains E. M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math., 171 (2010), 169–243, arXiv: math.QA/0309252 | DOI | MR | Zbl
[37] Rastelli L., Razamat S. S., “The supersymmetric index in four dimensions”, J. Phys. A: Math. Gen., 50 (2017), 443013, 34 pp., arXiv: 1608.02965 | DOI | MR | Zbl
[38] Römelsberger C., “Counting chiral primaries in ${\mathcal N}=1$, $d=4$ superconformal field theories”, Nuclear Phys. B, 747 (2006), 329–353, arXiv: hep-th/0510060 | DOI | MR | Zbl
[39] Rosengren H., Warnaar S. O., Elliptic hypergeometric functions associated with root systems, arXiv: 1704.08406
[40] Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR | Zbl
[41] Spiridonov V. P., “On the elliptic beta function”, Russian Math. Surveys, 56 (2001), 185–186 | DOI | MR | Zbl
[42] Spiridonov V. P., “Bailey's tree for integrals”, Theoret. and Math. Phys., 139 (2004), 536–541, arXiv: math.CA/0312502 | DOI | MR | Zbl
[43] Spiridonov V. P., “Theta hypergeometric integrals”, St. Petersburg Math. J., 15 (2004), 929–967, arXiv: math.CA/0303205 | DOI | MR | Zbl
[44] Spiridonov V. P., Vartanov G. S., “Elliptic hypergeometry of supersymmetric dualities”, Comm. Math. Phys., 304 (2011), 797–874, arXiv: 0910.5944 | DOI | MR | Zbl
[45] Spiridonov V. P., Vartanov G. S., “Elliptic hypergeometric integrals and 't Hooft anomaly matching conditions”, J. High Energy Phys., 2012:6 (2012), 016, 22 pp., arXiv: 1203.5677 | DOI | MR
[46] Spiridonov V. P., Vartanov G. S., “Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots, and vortices”, Comm. Math. Phys., 325 (2014), 421–486, arXiv: 1107.5788 | DOI | MR | Zbl
[47] Spiridonov V. P., Warnaar S. O., “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207 (2006), 91–132, arXiv: math.CA/0411044 | DOI | MR | Zbl
[48] Stokman J. V., “Hyperbolic beta integrals”, Adv. Math., 190 (2005), 119–160, arXiv: math.QA/0303178 | DOI | MR | Zbl
[49] Teschner J., Supersymmetric gauge theories, quantisation of moduli spaces of flat connections, and Liouville theory, arXiv: 1412.7140 | MR
[50] Vartanov G. S., “On the ISS model of dynamical SUSY breaking”, Phys. Lett. B, 696 (2011), 288–290, arXiv: 1009.2153 | DOI | MR