@article{SIGMA_2018_14_a40,
author = {Sarah B. Lobb and Frank W. Nijhoff},
title = {A {Variational} {Principle} for {Discrete} {Integrable} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a40/}
}
Sarah B. Lobb; Frank W. Nijhoff. A Variational Principle for Discrete Integrable Systems. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a40/
[1] Adler V. E., Bobenko A. I., Suris Yu.B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl
[2] Bobenko A. I., Suris Yu.B., “On the Lagrangian structure of integrable quad-equations”, Lett. Math. Phys., 92 (2010), 17–31, arXiv: 0912.2464 | DOI | MR | Zbl
[3] Bobenko A. I., Suris Yu.B., “Discrete pluriharmonic functions as solutions of linear pluri-Lagrangian systems”, Comm. Math. Phys., 336 (2015), 199–215, arXiv: 1403.2876 | DOI | MR | Zbl
[4] Boll R., Petrera M., Suris Yu.B., “Multi-time Lagrangian 1-forms for families of Bäcklund transformations: Toda-type systems”, J. Phys. A: Math. Theor., 46 (2013), 275204, 26 pp., arXiv: 1302.7144 | DOI | MR | Zbl
[5] Boll R., Petrera M., Suris Yu.B., What is integrability of discrete variational systems?, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20130550, 15 pp., arXiv: 1307.0523 | DOI | MR | Zbl
[6] Boll R., Petrera M., Suris Yu.B., “Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems”, J. Phys. A: Math. Theor., 48 (2015), 085203, 28 pp., arXiv: 1408.2405 | DOI | MR | Zbl
[7] Boll R., Petrera M., Suris Yu.B., “On the variational interpretation of the discrete KP equation”, Advances in Discrete Differential Geometry, ed. A.I. Bobenko, Springer, Berlin, 2016, 379–405, arXiv: 1506.00729 | DOI | MR | Zbl
[8] Boll R., Suris Yu.B., “On the Lagrangian structure of 3D consistent systems of asymmetric quad-equations”, J. Phys. A: Math. Theor., 45 (2012), 115201, 18 pp., arXiv: 1108.0016 | DOI | MR | Zbl
[9] Cadzow J. A., “Discrete calculus of variations”, Internat. J. Control, 11 (1970), 393–407 | DOI | Zbl
[10] Capel H. W., Nijhoff F. W., Papageorgiou V. G., “Complete integrability of Lagrangian mappings and lattices of KdV type”, Phys. Lett. A, 155 (1991), 377–387 | DOI | MR
[11] Hietarinta J., Joshi N., Nijhoff F. W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl
[12] King S. D., Nijhoff F. W., Quantum variational principle and quantum multiform structure: the case of quadratic Lagrangians, arXiv: 1702.08709
[13] Lobb S. B., Nijhoff F. W., “Lagrangian multiforms and multidimensional consistency”, J. Phys. A: Math. Theor., 42 (2009), 454013, 18 pp., arXiv: 0903.4086 | DOI | MR | Zbl
[14] Lobb S. B., Nijhoff F. W., “Lagrangian multiform structure for the lattice Gel'fand–Dikii hierarchy”, J. Phys. A: Math. Theor., 43 (2010), 072003, 11 pp., arXiv: 0911.1234 | DOI | MR | Zbl
[15] Lobb S. B., Nijhoff F. W., Quispel G. R. W., “Lagrangian multiform structure for the lattice KP system”, J. Phys. A: Math. Theor., 42 (2009), 472002, 11 pp., arXiv: 0906.5282 | DOI | MR | Zbl
[16] Logan J. D., “First integrals in the discrete variational calculus”, Aequationes Math., 9 (1973), 210–220 | DOI | MR | Zbl
[17] Maeda S., “Canonical structure and symmetries for discrete systems”, Math. Japon., 25 (1980), 405–420 | MR | Zbl
[18] Maeda S., “Extension of discrete Noether theorem”, Math. Japon., 26 (1981), 85–90 | MR | Zbl
[19] Maeda S., “Lagrangian formulation of discrete systems and concept of difference space”, Math. Japon., 27 (1982), 345–356 | MR | Zbl
[20] Nijhoff F. W., “New variational principle for integrable systems”, Nonlinear Mathematical Physics: Twenty Years of JNMP (Norway, June 4–14, 2013) http://staff.www.ltu.se/ñorbert/JNMP-Conference-2013/JNMP-conference-2013.html
[21] Sahadevan R., Rasin O. G., Hydon P. E., “Integrability conditions for nonautonomous quad-graph equations”, J. Math. Anal. Appl., 331 (2007), 712–726, arXiv: nlin.SI/0611019 | DOI | MR | Zbl
[22] Suris Yu.B., “Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms”, J. Geom. Mech., 5 (2013), 365–379, arXiv: 1212.3314 | DOI | MR | Zbl
[23] Suris Yu.B., Vermeeren M., “On the Lagrangian structure of integrable hierarchies”, Advances in Discrete Differential Geometry, ed. A. I. Bobenko, Springer, Berlin, 2016, 347–378, arXiv: 1510.03724 | DOI | MR | Zbl
[24] Xenitidis P., Nijhoff F. W., Lobb S. B., “On the Lagrangian formulation of multidimensionally consistent systems”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 3295–3317, arXiv: 1008.1952 | DOI | MR | Zbl
[25] Yoo-Kong S., Calogero–Moser type systems, associated KP systems, and Lagrangian structures, Ph.D. Thesis, University of Leeds, 2011
[26] Yoo-Kong S., Lobb S. B., Nijhoff F. W., “Discrete-time Calogero–Moser system and Lagrangian 1-form structure”, J. Phys. A: Math. Theor., 44 (2011), 365203, 39 pp., arXiv: 1102.0663 | DOI | MR | Zbl
[27] Yoo-Kong S., Nijhoff F. W., Discrete-time Ruijsenaars–Schneider system and Lagrangian 1-form structure, arXiv: 1112.4576