@article{SIGMA_2018_14_a4,
author = {Kirill Mackenzie and Anatol Odzijewicz and Aneta Sli\.zewska},
title = {Poisson {Geometry} {Related} to {Atiyah} {Sequences}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a4/}
}
TY - JOUR AU - Kirill Mackenzie AU - Anatol Odzijewicz AU - Aneta Sliżewska TI - Poisson Geometry Related to Atiyah Sequences JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a4/ LA - en ID - SIGMA_2018_14_a4 ER -
Kirill Mackenzie; Anatol Odzijewicz; Aneta Sliżewska. Poisson Geometry Related to Atiyah Sequences. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a4/
[1] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999 | MR | Zbl
[2] Coste A., Dazord P., Weinstein A., “Groupoïdes symplectiques”, Publ. Dép. Math. Nouvelle Sér. A, 87, no. 2, University Claude-Bernard, Lyon, 1987, 1–62 | MR
[3] Gay-Balmaz F., Ratiu T. S., “The geometric structure of complex fluids”, Adv. in Appl. Math., 42 (2009), 176–275, arXiv: 0903.4294 | DOI | MR | Zbl
[4] Holm D. D., Marsden J. E., Ratiu T. S., “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137 (1998), 1–81, arXiv: chao-dyn/9801015 | DOI | MR | Zbl
[5] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[6] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl
[7] Marsden J. E., Ratiu T. S., Weinstein A., “Semidirect products and reduction in mechanics”, Trans. Amer. Math. Soc., 281 (1984), 147–177 | DOI | MR | Zbl
[8] Pradines J., “Remarque sur le groupoïde cotangent de Weinstein–Dazord”, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 557–560 | MR | Zbl
[9] Reyman A. G., Semenov-Tian-Shansky M. A., “Group-theoretical methods in the theory of finite-dimensional integrable systems”, Dynamical Systems VII, Encyclopaedia of Mathematical Sciences, 16, Springer, Berlin–Heidelberg, 1994, 116–225 | DOI | MR
[10] Sternberg S., “Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang–Mills field”, Proc. Nat. Acad. Sci. USA, 74 (1977), 5253–5254 | DOI | MR | Zbl
[11] Weinstein A., “A universal phase space for particles in Yang–Mills fields”, Lett. Math. Phys., 2 (1977), 417–420 | DOI | MR
[12] Weinstein A., “Symplectic groupoids and Poisson manifolds”, Bull. Amer. Math. Soc. (N.S.), 16 (1987), 101–104 | DOI | MR | Zbl