Poisson Geometry Related to Atiyah Sequences
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct and investigate a short exact sequence of Poisson $\mathcal{V}\!\mathcal{B}$-groupoids which is canonically related to the Atiyah sequence of a $G$-principal bundle $P$. Our results include a description of the structure of the symplectic leaves of the Poisson groupoid $\frac{T^*P\times T^*P}{G}\rightrightarrows \frac{T^*P}{G}$. The semidirect product case, which is important for applications in Hamiltonian mechanics, is also discussed.
Keywords: Atiyah sequence; $\mathcal{VB}$-groupoid; Poisson groupoid; dualization of $\mathcal{VB}$-groupoid.
@article{SIGMA_2018_14_a4,
     author = {Kirill Mackenzie and Anatol Odzijewicz and Aneta Sli\.zewska},
     title = {Poisson {Geometry} {Related} to {Atiyah} {Sequences}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a4/}
}
TY  - JOUR
AU  - Kirill Mackenzie
AU  - Anatol Odzijewicz
AU  - Aneta Sliżewska
TI  - Poisson Geometry Related to Atiyah Sequences
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a4/
LA  - en
ID  - SIGMA_2018_14_a4
ER  - 
%0 Journal Article
%A Kirill Mackenzie
%A Anatol Odzijewicz
%A Aneta Sliżewska
%T Poisson Geometry Related to Atiyah Sequences
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a4/
%G en
%F SIGMA_2018_14_a4
Kirill Mackenzie; Anatol Odzijewicz; Aneta Sliżewska. Poisson Geometry Related to Atiyah Sequences. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a4/

[1] Cannas da Silva A., Weinstein A., Geometric models for noncommutative algebras, Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999 | MR | Zbl

[2] Coste A., Dazord P., Weinstein A., “Groupoïdes symplectiques”, Publ. Dép. Math. Nouvelle Sér. A, 87, no. 2, University Claude-Bernard, Lyon, 1987, 1–62 | MR

[3] Gay-Balmaz F., Ratiu T. S., “The geometric structure of complex fluids”, Adv. in Appl. Math., 42 (2009), 176–275, arXiv: 0903.4294 | DOI | MR | Zbl

[4] Holm D. D., Marsden J. E., Ratiu T. S., “The Euler–Poincaré equations and semidirect products with applications to continuum theories”, Adv. Math., 137 (1998), 1–81, arXiv: chao-dyn/9801015 | DOI | MR | Zbl

[5] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[6] Marsden J., Weinstein A., “Reduction of symplectic manifolds with symmetry”, Rep. Math. Phys., 5 (1974), 121–130 | DOI | MR | Zbl

[7] Marsden J. E., Ratiu T. S., Weinstein A., “Semidirect products and reduction in mechanics”, Trans. Amer. Math. Soc., 281 (1984), 147–177 | DOI | MR | Zbl

[8] Pradines J., “Remarque sur le groupoïde cotangent de Weinstein–Dazord”, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 557–560 | MR | Zbl

[9] Reyman A. G., Semenov-Tian-Shansky M. A., “Group-theoretical methods in the theory of finite-dimensional integrable systems”, Dynamical Systems VII, Encyclopaedia of Mathematical Sciences, 16, Springer, Berlin–Heidelberg, 1994, 116–225 | DOI | MR

[10] Sternberg S., “Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang–Mills field”, Proc. Nat. Acad. Sci. USA, 74 (1977), 5253–5254 | DOI | MR | Zbl

[11] Weinstein A., “A universal phase space for particles in Yang–Mills fields”, Lett. Math. Phys., 2 (1977), 417–420 | DOI | MR

[12] Weinstein A., “Symplectic groupoids and Poisson manifolds”, Bull. Amer. Math. Soc. (N.S.), 16 (1987), 101–104 | DOI | MR | Zbl