@article{SIGMA_2018_14_a38,
author = {Shinobu Hosono and Hiromichi Takagi},
title = {Movable vs {Monodromy} {Nilpotent} {Cones} of {Calabi{\textendash}Yau} {Manifolds}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a38/}
}
Shinobu Hosono; Hiromichi Takagi. Movable vs Monodromy Nilpotent Cones of Calabi–Yau Manifolds. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a38/
[1] Alim M., Scheidegger E., “Topological strings on elliptic fibrations”, Commun. Number Theory Phys., 8 (2014), 729–800, arXiv: 1205.1784 | DOI | MR | Zbl
[2] Aspinwall P. S., Greene B. R., Morrison D. R., “Multiple mirror manifolds and topology change in string theory”, Phys. Lett. B, 303 (1993), 249–259, arXiv: hep-th/9301043 | DOI | MR
[3] Batyrev V., Nill B., “Combinatorial aspects of mirror symmetry”, Integer Points in Polyhedra – Geometry, Number Theory, Representation Theory, Algebra, Optimization, Statistics, Contemp. Math., 452, Amer. Math. Soc., Providence, RI, 2008, 35–66, arXiv: math.CO/0703456 | DOI | MR | Zbl
[4] Batyrev V. V., Borisov L. A., “On Calabi–Yau complete intersections in toric varieties”, Higher-Dimensional Complex Varieties (Trento, 1994), de Gruyter, Berlin, 1996, 39–65, arXiv: alg-geom/9412017 | MR | Zbl
[5] Batyrev V. V., Ciocan-Fontanine I., Kim B., van Straten D., “Conifold transitions and mirror symmetry for Calabi–Yau complete intersections in Grassmannians”, Nuclear Phys. B, 514 (1998), 640–666, arXiv: alg-geom/9710022 | DOI | MR | Zbl
[6] Borisov L., Căldăraru A., “The Pfaffian–Grassmannian derived equivalence”, J. Algebraic Geom., 18 (2009), 201–222, arXiv: math.AG/0608404 | DOI | MR | Zbl
[7] Borisov L. A., Li Z., “On Clifford double mirrors of toric complete intersections”, Adv. Math., 328 (2018), 300–355, arXiv: 1601.00809 | DOI | MR | Zbl
[8] Bridgeland T., “Stability conditions on triangulated categories”, Ann. of Math., 166 (2007), 317–345, arXiv: math.AG/0212237 | DOI | MR | Zbl
[9] Candelas P., de la Ossa X., Font A., Katz S., Morrison D. R., “Mirror symmetry for two-parameter models. I”, Nuclear Phys. B, 416 (1994), 481–538, arXiv: hep-th/9308083 | DOI | MR | Zbl
[10] Dolgachev I. V., “Mirror symmetry for lattice polarized $K3$ surfaces”, J. Math. Sci., 81 (1996), 2599–2630, arXiv: alg-geom/9502005 | DOI | MR | Zbl
[11] Fan Y.-W., Hong H., Lau S.-C., Yau S.-T., Mirror of Atiyah flop in symplectic geometry and stability conditions, arXiv: 1706.02942
[12] Favero D., Kelly T. L., “Proof of a conjecture of Batyrev and Nill”, Amer. J. Math., 139 (2017), 1493–1520, arXiv: 1412.1354 | DOI | MR | Zbl
[13] Festi D., Garbagnati A., van Geemen B., van Luijk R., “The Cayley–Oguiso automorphism of positive entropy on a K3 surface”, J. Mod. Dyn., 7 (2013), 75–97 | DOI | MR | Zbl
[14] Fryers M. J., The movable fan of the Horrocks–Mumford quintic, arXiv: math.AG/0102055
[15] Gel'fand I. M., Zelevinskii A. V., Kapranov M. M., “Hypergeometric functions and toric varieties”, Funct. Anal. Appl., 23 (1989), 94–106 | DOI | MR | Zbl
[16] Griffiths P., “Hodge theory and geometry”, Bull. London Math. Soc., 36 (2004), 721–757 | DOI | MR | Zbl
[17] Gross M., Siebert B., “Mirror symmetry via logarithmic degeneration data. I”, J. Differential Geom., 72 (2006), 169–338, arXiv: math.AG/0309070 | DOI | MR | Zbl
[18] Gross M., Siebert B., “Mirror symmetry via logarithmic degeneration data. II”, J. Algebraic Geom., 19 (2010), 679–780, arXiv: 0709.2290 | DOI | MR | Zbl
[19] Hosono S., “Local mirror symmetry and type IIA monodromy of Calabi–Yau manifolds”, Adv. Theor. Math. Phys., 4 (2000), 335–376, arXiv: hep-th/0007071 | DOI | MR | Zbl
[20] Hosono S., “Central charges, symplectic forms, and hypergeometric series in local mirror symmetry”, Mirror Symmetry. V, AMS/IP Stud. Adv. Math., 38, eds. S.-T. Yau, N. Yui, J. Lewis, Amer. Math. Soc., Providence, RI, 2006, 405–439, arXiv: hep-th/0404043 | DOI | MR | Zbl
[21] Hosono S., “Moduli spaces of Calabi–Yau complete intersections”, Nuclear Phys. B, 898 (2015), 661–666 | DOI | MR | Zbl
[22] Hosono S., Klemm A., Theisen S., Yau S.-T., “Mirror symmetry, mirror map and applications to complete intersection Calabi–Yau spaces”, Nuclear Phys. B, 433 (1995), 501–552, arXiv: hep-th/9406055 | DOI | MR
[23] Hosono S., Konishi Y., “Higher genus Gromov–Witten invariants of the Grassmannian, and the Pfaffian Calabi–Yau 3-folds”, Adv. Theor. Math. Phys., 13 (2009), 463–495, arXiv: 0704.2928 | DOI | MR | Zbl
[24] Hosono S., Lian B. H., Oguiso K., Yau S.-T., “Fourier–Mukai number of a K3 surface”, Algebraic Structures and Moduli Spaces, CRM Proc. Lecture Notes, 38, Amer. Math. Soc., Providence, RI, 2004, 177–192, arXiv: math.AG/0202014 | DOI | MR | Zbl
[25] Hosono S., Lian B. H., Yau S.-T., “GKZ-generalized hypergeometric systems in mirror symmetry of Calabi–Yau hypersurfaces”, Comm. Math. Phys., 182 (1996), 535–577, arXiv: alg-geom/9511001 | DOI | MR | Zbl
[26] Hosono S., Takagi H., “Determinantal quintics and mirror symmetry of Reye congruences”, Comm. Math. Phys., 329 (2014), 1171–1218, arXiv: 1208.1813 | DOI | MR | Zbl
[27] Hosono S., Takagi H., “Mirror symmetry and projective geometry of Reye congruences I”, J. Algebraic Geom., 23 (2014), 279–312, arXiv: 1101.2746 | DOI | MR | Zbl
[28] Hosono S., Takagi H., “Double quintic symmetroids, Reye congruences, and their derived equivalence”, J. Differential Geom., 104 (2016), 443–497, arXiv: 1302.5883 | DOI | MR | Zbl
[29] Iritani H., “Quantum cohomology and periods”, Ann. Inst. Fourier (Grenoble), 61 (2011), 2909–2958, arXiv: 1101.4512 | DOI | MR | Zbl
[30] Iritani H., Xiao J., “Extremal transition and quantum cohomology: examples of toric degeneration”, Kyoto J. Math., 56 (2016), 873–905, arXiv: 1504.05013 | DOI | MR | Zbl
[31] Kawamata Y., “Crepant blowing-up of $3$-dimensional canonical singularities and its application to degenerations of surfaces”, Ann. of Math., 127 (1988), 93–163 | DOI | MR | Zbl
[32] Kawamata Y., “On the cone of divisors of Calabi–Yau fiber spaces”, Internat. J. Math., 8 (1997), 665–687, arXiv: alg-geom/9701006 | DOI | MR | Zbl
[33] Kollár J., “Flops”, Nagoya Math. J., 113 (1989), 15–36 | DOI | MR | Zbl
[34] Kontsevich M., “Homological algebra of mirror symmetry”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 120–139, arXiv: alg-geom/9411018 | DOI | Zbl
[35] Kuznetsov A., Homological projective duality for Grassmannians of lines, arXiv: math.AG/0610957
[36] Kuznetsov A., “Homological projective duality”, Publ. Math. Inst. Hautes Études Sci., 2007, 157–220, arXiv: math.AG/0507292 | DOI | MR | Zbl
[37] Lee Y.-P., Lin H.-W., Wang C.-L., Quantum cohomology under birational maps and transitions, arXiv: 1705.04799 | MR
[38] Morrison D. R., “Compactifications of moduli spaces inspired by mirror symmetry”, Astérisque, 218, 1993, 243–271, arXiv: alg-geom/9304007 | MR | Zbl
[39] Morrison D. R., “Beyond the Kähler cone”, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc., 9, Bar-Ilan University, Ramat Gan, 1996, 361–376, arXiv: alg-geom/9407007 | MR | Zbl
[40] Mukai S., “Symplectic structure of the moduli space of sheaves on an abelian or $K3$ surface”, Invent. Math., 77 (1984), 101–116 | DOI | MR | Zbl
[41] Oguiso K., “Automorphism groups of Calabi–Yau manifolds of Picard number 2”, J. Algebraic Geom., 23 (2014), 775–795, arXiv: 1206.1649 | DOI | MR | Zbl
[42] Oguiso K., “Free automorphisms of positive entropy on smooth Kähler surfaces”, Algebraic Geometry in East Asia – Taipei 2011, Adv. Stud. Pure Math., 65, Math. Soc. Japan, Tokyo, 2015, 187–199, arXiv: 1202.2637 | MR | Zbl
[43] Rødland E. A., “The Pfaffian Calabi–Yau, its mirror, and their link to the Grassmannian $G(2,7)$”, Compositio Math., 122 (2000), 135–149, arXiv: math.AG/9801092 | DOI | MR
[44] Ruddat H., Siebert B., Canonical coordinates in toric degenerations, arXiv: 1409.4750
[45] Strominger A., Yau S.-T., Zaslow E., “Mirror symmetry is $T$-duality”, Nuclear Phys. B, 479 (1996), 243–259, arXiv: hep-th/9606040 | DOI | MR | Zbl
[46] van Straten D., Calabi–Yau operators, arXiv: 1704.00164