@article{SIGMA_2018_14_a37,
author = {Kay Jin Lim and Kai Meng Tan},
title = {Homomorphisms from {Specht} {Modules} to {Signed} {Young} {Permutation} {Modules}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a37/}
}
Kay Jin Lim; Kai Meng Tan. Homomorphisms from Specht Modules to Signed Young Permutation Modules. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a37/
[1] Chuang J., Tan K. M., “On certain blocks of Schur algebras”, Bull. London Math. Soc., 33 (2001), 157–167 | DOI | MR
[2] Danz S., Lim K. J., “Signed {Y}oung modules and simple Specht modules”, Adv. Math., 307 (2017), 369–416, arXiv: 1504.02823 | DOI | MR
[3] Donkin S., “Symmetric and exterior powers, linear source modules and representations of Schur superalgebras”, Proc. London Math. Soc., 83 (2001), 647–680 | DOI | MR
[4] Du J., Rui H., “Quantum Schur superalgebras and Kazhdan–Lusztig combinatorics”, J. Pure Appl. Algebra, 215 (2011), 2715–2737, arXiv: 1010.3800 | DOI | MR
[5] Fulton W., Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR
[6] Hemmer D. J., “Irreducible Specht modules are signed Young modules”, J. Algebra, 305 (2006), 433–441, arXiv: math.RT/0512469 | DOI | MR
[7] James G. D., The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer, Berlin, 1978 | DOI | MR
[8] James G. D., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981 | MR
[9] James G. D., Peel M. H., “Specht series for skew representations of symmetric groups”, J. Algebra, 56 (1979), 343–364 | DOI | MR
[10] Peel M. H., “Hook representations of the symmetric groups”, Glasgow Math. J., 12 (1971), 136–149 | DOI | MR
[11] Peel M. H., “Specht modules and symmetric groups”, J. Algebra, 36 (1975), 88–97 | DOI | MR
[12] Richards M. J., “Some decomposition numbers for Hecke algebras of general linear groups”, Math. Proc. Cambridge Philos. Soc., 119 (1996), 383–402 | DOI | MR
[13] Scopes J., “Symmetric group blocks of defect two”, Quart. J. Math. Oxford Ser. (2), 46 (1995), 201–234 | DOI | MR
[14] Sergeev A. N., “Tensor algebra of the identity representation as a module over the Lie superalgebras ${\rm Gl}(n,m)$ and $Q(n)$”, Math. USSR Sb., 51 (1985), 419–427 | DOI | MR