Homomorphisms from Specht Modules to Signed Young Permutation Modules
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a class $\Theta_{\mathscr{R}}$ of homomorphisms from a Specht module $S_{\mathbb{Z}}^{\lambda}$ to a signed permutation module $M_{\mathbb{Z}}(\alpha|\beta)$ which generalises James's construction of homomorphisms whose codomain is a Young permutation module. We show that any $\phi \in \mathrm{Hom}_{{\mathbb{Z}}\mathfrak{S}_n}\big(S_{\mathbb{Z}}^\lambda, M_{\mathbb{Z}}(\alpha|\beta)\big)$ lies in the $\mathbb{Q}$-span of $\Theta_{\text{sstd}}$, a subset of $\Theta_{\mathbb{R}}$ corresponding to semistandard $\lambda$-tableaux of type $(\alpha|\beta)$. We also study the conditions for which $\Theta^{\mathbb{Z}}_{\mathrm{sstd}}$ – a subset of $\mathrm{Hom}_{{\mathbb{Z}}\mathfrak{S}_n}\big(S_{\mathbb{Z}}^\lambda,M_{\mathbb{Z}}(\alpha|\beta)\big)$ induced by $\Theta_{\mathrm{sstd}}$ – is linearly independent, and show that it is a basis for $\mathrm{Hom}_{{\mathbb{Z}}\mathfrak{S}_n}\big(S_{\mathbb{Z}}^\lambda,M_{\mathbb{Z}}(\alpha|\beta)\big)$ when ${\mathbb{Z}}\mathfrak{S}_n$ is semisimple.
Keywords: symmetric group; Specht module; signed Young permutation module; homomorphism.
@article{SIGMA_2018_14_a37,
     author = {Kay Jin Lim and Kai Meng Tan},
     title = {Homomorphisms from {Specht} {Modules} to {Signed} {Young} {Permutation} {Modules}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a37/}
}
TY  - JOUR
AU  - Kay Jin Lim
AU  - Kai Meng Tan
TI  - Homomorphisms from Specht Modules to Signed Young Permutation Modules
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a37/
LA  - en
ID  - SIGMA_2018_14_a37
ER  - 
%0 Journal Article
%A Kay Jin Lim
%A Kai Meng Tan
%T Homomorphisms from Specht Modules to Signed Young Permutation Modules
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a37/
%G en
%F SIGMA_2018_14_a37
Kay Jin Lim; Kai Meng Tan. Homomorphisms from Specht Modules to Signed Young Permutation Modules. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a37/

[1] Chuang J., Tan K. M., “On certain blocks of Schur algebras”, Bull. London Math. Soc., 33 (2001), 157–167 | DOI | MR

[2] Danz S., Lim K. J., “Signed {Y}oung modules and simple Specht modules”, Adv. Math., 307 (2017), 369–416, arXiv: 1504.02823 | DOI | MR

[3] Donkin S., “Symmetric and exterior powers, linear source modules and representations of Schur superalgebras”, Proc. London Math. Soc., 83 (2001), 647–680 | DOI | MR

[4] Du J., Rui H., “Quantum Schur superalgebras and Kazhdan–Lusztig combinatorics”, J. Pure Appl. Algebra, 215 (2011), 2715–2737, arXiv: 1010.3800 | DOI | MR

[5] Fulton W., Young tableaux. With applications to representation theory and geometry, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR

[6] Hemmer D. J., “Irreducible Specht modules are signed Young modules”, J. Algebra, 305 (2006), 433–441, arXiv: math.RT/0512469 | DOI | MR

[7] James G. D., The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer, Berlin, 1978 | DOI | MR

[8] James G. D., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981 | MR

[9] James G. D., Peel M. H., “Specht series for skew representations of symmetric groups”, J. Algebra, 56 (1979), 343–364 | DOI | MR

[10] Peel M. H., “Hook representations of the symmetric groups”, Glasgow Math. J., 12 (1971), 136–149 | DOI | MR

[11] Peel M. H., “Specht modules and symmetric groups”, J. Algebra, 36 (1975), 88–97 | DOI | MR

[12] Richards M. J., “Some decomposition numbers for Hecke algebras of general linear groups”, Math. Proc. Cambridge Philos. Soc., 119 (1996), 383–402 | DOI | MR

[13] Scopes J., “Symmetric group blocks of defect two”, Quart. J. Math. Oxford Ser. (2), 46 (1995), 201–234 | DOI | MR

[14] Sergeev A. N., “Tensor algebra of the identity representation as a module over the Lie superalgebras ${\rm Gl}(n,m)$ and $Q(n)$”, Math. USSR Sb., 51 (1985), 419–427 | DOI | MR