Results Concerning Almost Complex Structures on the Six-Sphere
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the standard metric on the six-dimensional sphere, with Levi-Civita connection $\nabla$, we show there is no almost complex structure $J$ such that $\nabla_X J$ and $\nabla_{JX} J$ commute for every $X$, nor is there any integrable $J$ such that $\nabla_{JX} J = J \nabla_X J$ for every $X$. The latter statement generalizes a previously known result on the non-existence of integrable orthogonal almost complex structures on the six-sphere. Both statements have refined versions, expressed as intrinsic first order differential inequalities depending only on $J$ and the metric. The new techniques employed include an almost-complex analogue of the Gauss map, defined for any almost complex manifold in Euclidean space.
Keywords: six-sphere; almost complex; integrable.
@article{SIGMA_2018_14_a33,
     author = {Scott O. Wilson},
     title = {Results {Concerning} {Almost} {Complex} {Structures} on the {Six-Sphere}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a33/}
}
TY  - JOUR
AU  - Scott O. Wilson
TI  - Results Concerning Almost Complex Structures on the Six-Sphere
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a33/
LA  - en
ID  - SIGMA_2018_14_a33
ER  - 
%0 Journal Article
%A Scott O. Wilson
%T Results Concerning Almost Complex Structures on the Six-Sphere
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a33/
%G en
%F SIGMA_2018_14_a33
Scott O. Wilson. Results Concerning Almost Complex Structures on the Six-Sphere. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a33/

[1] Blanchard A., “Recherche de structures analytiques complexes sur certaines variétés”, C. R. Acad. Sci. Paris, 236 (1953), 657–659 | MR

[2] Bor G., Hernández-Lamoneda L., “The canonical bundle of a Hermitian manifold”, Bol. Soc. Mat. Mexicana, 5 (1999), 187–198 | MR

[3] Borel A., Serre J. P., “Détermination des $p$-puissances réduites de Steenrod dans la cohomologie des groupes classiques. Applications”, C. R. Acad. Sci. Paris, 233 (1951), 680–682 | MR

[4] Bryant R., S.-S. Chern's study of almost-complex structures on the six-sphere, arXiv: 1405.3405

[5] Hopf H., “Zur Topologie der komplexen Mannigfaltigkeiten”, Studies and Essays Presented to R. Courant on his 60th Birthday (January 8, 1948), Interscience Publishers, Inc., New York, 1948, 167–185 | MR

[6] Karoubi M., Leruste C., Algebraic topology via differential geometry, London Mathematical Society Lecture Note Series, 99, Cambridge University Press, Cambridge, 1987 | MR

[7] LeBrun C., “Orthogonal complex structures on $S^6$”, Proc. Amer. Math. Soc., 101 (1987), 136–138 | MR

[8] McDuff D., Salamon D., $J$-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, 52, 2nd ed., Amer. Math. Soc., Providence, RI, 2012 | MR

[9] Milnor J. W., Stasheff J. D., Characteristic classes, Annals of Mathematics Studies, 76, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974 | MR

[10] Newlander A., Nirenberg L., “Complex analytic coordinates in almost complex manifolds”, Ann. of Math., 65 (1957), 391–404 | DOI | MR

[11] Salamon S. M., “Hermitian geometry”, Invitations to Geometry and Topology, Oxford Graduate Texts in Mathematics, 7, Oxford University Press, Oxford, 2002, 233–291 | MR

[12] Tang Z., “Curvature and integrability of an almost Hermitian structure”, Internat. J. Math., 17 (2006), 97–105 | DOI | MR