The Duals of the 2-Modular Irreducible Modules of the Alternating Groups
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We determine the dual modules of all irreducible modules of alternating groups over fields of characteristic 2.
Keywords: symmetric group; alternating group; dual module; irreducible module; characteristic 2.
@article{SIGMA_2018_14_a32,
     author = {John Murray},
     title = {The {Duals} of the {2-Modular} {Irreducible} {Modules} of the {Alternating} {Groups}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a32/}
}
TY  - JOUR
AU  - John Murray
TI  - The Duals of the 2-Modular Irreducible Modules of the Alternating Groups
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a32/
LA  - en
ID  - SIGMA_2018_14_a32
ER  - 
%0 Journal Article
%A John Murray
%T The Duals of the 2-Modular Irreducible Modules of the Alternating Groups
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a32/
%G en
%F SIGMA_2018_14_a32
John Murray. The Duals of the 2-Modular Irreducible Modules of the Alternating Groups. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a32/

[1] Benson D., “Spin modules for symmetric groups”, J. London Math. Soc., 38 (1988), 250–262 | DOI | MR

[2] Bessenrodt C., “On the representation theory of alternating groups”, Algebra Colloq., 10 (2003), 241–250 | MR

[3] Brauer R., “On the connection between the ordinary and the modular characters of groups of finite order”, Ann. of Math., 42 (1941), 926–935 | DOI | MR

[4] Brauer R., Nesbitt C., “On the modular characters of groups”, Ann. of Math., 42 (1941), 556–590 | DOI | MR

[5] Bressoud D. M., “A combinatorial proof of Schur's 1926 partition theorem”, Proc. Amer. Math. Soc., 79 (1980), 338–340 | MR

[6] Ford B., Kleshchev A. S., “A proof of the Mullineux conjecture”, Math. Z., 226 (1997), 267–308 | DOI | MR

[7] James G. D., The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer, Berlin, 1978 | DOI | MR

[8] James G. D., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981 | MR

[9] Schur I., “Zur additiven Zahlentheorie”, Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl., 1926, 488–495; Reprinted: Schur I., Gesammelte Abhandlungen, v. III, Springer-Verlag, Berlin–New York, 1973, 43–50 | MR