@article{SIGMA_2018_14_a32,
author = {John Murray},
title = {The {Duals} of the {2-Modular} {Irreducible} {Modules} of the {Alternating} {Groups}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a32/}
}
John Murray. The Duals of the 2-Modular Irreducible Modules of the Alternating Groups. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a32/
[1] Benson D., “Spin modules for symmetric groups”, J. London Math. Soc., 38 (1988), 250–262 | DOI | MR
[2] Bessenrodt C., “On the representation theory of alternating groups”, Algebra Colloq., 10 (2003), 241–250 | MR
[3] Brauer R., “On the connection between the ordinary and the modular characters of groups of finite order”, Ann. of Math., 42 (1941), 926–935 | DOI | MR
[4] Brauer R., Nesbitt C., “On the modular characters of groups”, Ann. of Math., 42 (1941), 556–590 | DOI | MR
[5] Bressoud D. M., “A combinatorial proof of Schur's 1926 partition theorem”, Proc. Amer. Math. Soc., 79 (1980), 338–340 | MR
[6] Ford B., Kleshchev A. S., “A proof of the Mullineux conjecture”, Math. Z., 226 (1997), 267–308 | DOI | MR
[7] James G. D., The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer, Berlin, 1978 | DOI | MR
[8] James G. D., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, Mass., 1981 | MR
[9] Schur I., “Zur additiven Zahlentheorie”, Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl., 1926, 488–495; Reprinted: Schur I., Gesammelte Abhandlungen, v. III, Springer-Verlag, Berlin–New York, 1973, 43–50 | MR