@article{SIGMA_2018_14_a31,
author = {Dan Betea},
title = {Elliptically {Distributed} {Lozenge} {Tilings} of a {Hexagon}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a31/}
}
Dan Betea. Elliptically Distributed Lozenge Tilings of a Hexagon. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a31/
[1] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR
[2] Borodin A., “Determinantal point processes”, The Oxford Handbook of Random Matrix Theory, Oxford University Press, Oxford, 2011, 231–249, arXiv: 0911.1153 | MR
[3] Borodin A., Corwin I., “Macdonald processes”, Probab. Theory Related Fields, 158 (2014), 225–400, arXiv: 1111.4408 | DOI | MR
[4] Borodin A., Ferrari P. L., “Anisotropic growth of random surfaces in $2+1$ dimensions”, Comm. Math. Phys., 325 (2014), 603–684, arXiv: 0804.3035 | DOI | MR
[5] Borodin A., Gorin V., “Shuffling algorithm for boxed plane partitions”, Adv. Math., 220 (2009), 1739–1770, arXiv: 0804.3071 | DOI | MR
[6] Borodin A., Gorin V., Rains E. M., “$q$-distributions on boxed plane partitions”, Selecta Math. (N.S.), 16 (2010), 731–789, arXiv: 0905.0679 | DOI | MR
[7] Borodin A., Rains E. M., “Eynard–Mehta theorem, Schur process, and their Pfaffian analogs”, J. Stat. Phys., 121 (2005), 291–317, arXiv: math-ph/0409059 | DOI | MR
[8] Cohn H., Kenyon R., Propp J., “A variational principle for domino tilings”, J. Amer. Math. Soc., 14 (2001), 297–346, arXiv: math.CO/0008220 | DOI | MR
[9] Cohn H., Larsen M., Propp J., “The shape of a typical boxed plane partition”, New York J. Math., 4 (1998), 137–165, arXiv: . math.CO/9801059 | MR
[10] Diaconis P., Fill J. A., “Strong stationary times via a new form of duality”, Ann. Probab., 18 (1990), 1483–1522 | DOI | MR
[11] Eynard B., Mehta M. L., “Matrices coupled in a chain. I. Eigenvalue correlations”, J. Phys. A: Math. Gen., 31 (1998), 4449–4456, arXiv: cond-mat/9710230 | DOI | MR
[12] Frenkel I. B., Turaev V. G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR
[13] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR
[14] Gorin V. E., “Nonintersecting paths and the Hahn orthogonal polynomial ensemble”, Funct. Anal. Appl., 42 (2008), 180–197, arXiv: 0708.2349 | DOI | MR
[15] Johansson K., “Non-intersecting, simple, symmetric random walks and the extended Hahn kernel”, Ann. Inst. Fourier (Grenoble), 55 (2005), 2129–2145, arXiv: math.PR/0409013 | DOI | MR
[16] Kasteleyn P. W., “Graph theory and crystal physics”, Graph Theory and Theoretical Physics, Academic Press, London, 1967, 43–110 | MR
[17] Kenyon R., Okounkov A., “Limit shapes and the complex Burgers equation”, Acta Math., 199 (2007), 263–302, arXiv: math-ph/0507007 | DOI | MR
[18] Koekoek R., Lesky P. A., Swarttouw R. F., “Hypergeometric orthogonal polynomials and their $q$-analogues”, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR
[19] Macdonald I. G., Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Oxford Science Publications, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1995 | MR
[20] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR
[21] Rains E. M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math., 171 (2010), 169–243, arXiv: math.QA/0309252 | DOI | MR
[22] Rains E. M., “Elliptic Littlewood identities”, J. Combin. Theory Ser. A, 119 (2012), 1558–1609, arXiv: 0806.0871 | DOI | MR
[23] Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR
[24] Schlosser M., “Elliptic enumeration of nonintersecting lattice paths”, J. Combin. Theory Ser. A, 114 (2007), 505–521, arXiv: math.CO/0602260 | DOI | MR
[25] Silverman J. H., Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, 151, Springer-Verlag, New York, 1994 | DOI | MR
[26] Spiridonov V., Zhedanov A., “Spectral transformation chains and some new biorthogonal rational functions”, Comm. Math. Phys., 210 (2000), 49–83 | DOI | MR
[27] Spiridonov V., Zhedanov A., “Generalized eigenvalue problem and a new family of rational functions biorthogonal on elliptic grids”, Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., 30, Kluwer Acad. Publ., Dordrecht, 2001, 365–388 | DOI | MR
[28] Warnaar S. O., “Summation and transformation formulas for elliptic hypergeometric series”, Constr. Approx., 18 (2002), 479–502, arXiv: math.QA/0001006 | DOI | MR