@article{SIGMA_2018_14_a27,
author = {Wadim Zudilin},
title = {One of the {Odd} {Zeta} {Values} from $\zeta(5)$ to $\zeta(25)$ {Is} {Irrational.} {By} {Elementary} {Means}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a27/}
}
TY - JOUR AU - Wadim Zudilin TI - One of the Odd Zeta Values from $\zeta(5)$ to $\zeta(25)$ Is Irrational. By Elementary Means JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a27/ LA - en ID - SIGMA_2018_14_a27 ER -
Wadim Zudilin. One of the Odd Zeta Values from $\zeta(5)$ to $\zeta(25)$ Is Irrational. By Elementary Means. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a27/
[1] Ball K., Rivoal T., “Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs”, Invent. Math., 146 (2001), 193–207 | DOI | MR
[2] de Bruijn N. G., Asymptotic methods in analysis, Bibliotheca Mathematica, 4, North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen, 1958 ; Interscience Publishers Inc., New York | MR
[3] Fischler S., “Irrationalité de valeurs de zêta (d'après Apéry, Rivoal, $\dots$)”, Astérisque, 294, 2004, 27–62, arXiv: math.NT/0303066 | MR
[4] Fischler S., Sprang J., Zudilin W., Many odd zeta values are irrational, arXiv: 1803.08905
[5] Hanson D., “On the product of the primes”, Canad. Math. Bull., 15 (1972), 33–37 | DOI | MR
[6] Krattenthaler C., Zudilin W., Hypergeometry inspired by irrationality questions, arXiv: 1802.08856
[7] Rivoal T., “Irrationalité d'au moins un des neuf nombres $\zeta(5),\zeta(7),\dots,\zeta(21)$”, Acta Arith., 103 (2002), 157–167, arXiv: math.NT/0104221 | DOI | MR
[8] Rivoal T., Zudilin W., A note on odd zeta values, arXiv: 1803.03160
[9] Sprang J., Infinitely many odd zeta values are irrational. By elementary means, arXiv: 1802.09410
[10] Zudilin W., “Arithmetic of linear forms involving odd zeta values”, J. Théor. Nombres Bordeaux, 16 (2004), 251–291, arXiv: math.NT/0206176 | DOI | MR