One of the Odd Zeta Values from $\zeta(5)$ to $\zeta(25)$ Is Irrational. By Elementary Means
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Available proofs of result of the type `at least one of the odd zeta values $\zeta(5),\zeta(7),\dots,\zeta(s)$ is irrational' make use of the saddle-point method or of linear independence criteria, or both. These two remarkable techniques are however counted as highly non-elementary, therefore leaving the partial irrationality result inaccessible to general mathematics audience in all its glory. Here we modify the original construction of linear forms in odd zeta values to produce, for the first time, an elementary proof of such a result — a proof whose technical ingredients are limited to the prime number theorem and Stirling's approximation formula for the factorial.
Keywords: irrationality; zeta value; hypergeometric series.
@article{SIGMA_2018_14_a27,
     author = {Wadim Zudilin},
     title = {One of the {Odd} {Zeta} {Values} from $\zeta(5)$ to $\zeta(25)$ {Is} {Irrational.} {By} {Elementary} {Means}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a27/}
}
TY  - JOUR
AU  - Wadim Zudilin
TI  - One of the Odd Zeta Values from $\zeta(5)$ to $\zeta(25)$ Is Irrational. By Elementary Means
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a27/
LA  - en
ID  - SIGMA_2018_14_a27
ER  - 
%0 Journal Article
%A Wadim Zudilin
%T One of the Odd Zeta Values from $\zeta(5)$ to $\zeta(25)$ Is Irrational. By Elementary Means
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a27/
%G en
%F SIGMA_2018_14_a27
Wadim Zudilin. One of the Odd Zeta Values from $\zeta(5)$ to $\zeta(25)$ Is Irrational. By Elementary Means. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a27/

[1] Ball K., Rivoal T., “Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs”, Invent. Math., 146 (2001), 193–207 | DOI | MR

[2] de Bruijn N. G., Asymptotic methods in analysis, Bibliotheca Mathematica, 4, North-Holland Publishing Co., Amsterdam; P. Noordhoff Ltd., Groningen, 1958 ; Interscience Publishers Inc., New York | MR

[3] Fischler S., “Irrationalité de valeurs de zêta (d'après Apéry, Rivoal, $\dots$)”, Astérisque, 294, 2004, 27–62, arXiv: math.NT/0303066 | MR

[4] Fischler S., Sprang J., Zudilin W., Many odd zeta values are irrational, arXiv: 1803.08905

[5] Hanson D., “On the product of the primes”, Canad. Math. Bull., 15 (1972), 33–37 | DOI | MR

[6] Krattenthaler C., Zudilin W., Hypergeometry inspired by irrationality questions, arXiv: 1802.08856

[7] Rivoal T., “Irrationalité d'au moins un des neuf nombres $\zeta(5),\zeta(7),\dots,\zeta(21)$”, Acta Arith., 103 (2002), 157–167, arXiv: math.NT/0104221 | DOI | MR

[8] Rivoal T., Zudilin W., A note on odd zeta values, arXiv: 1803.03160

[9] Sprang J., Infinitely many odd zeta values are irrational. By elementary means, arXiv: 1802.09410

[10] Zudilin W., “Arithmetic of linear forms involving odd zeta values”, J. Théor. Nombres Bordeaux, 16 (2004), 251–291, arXiv: math.NT/0206176 | DOI | MR