Hopf Algebras which Factorize through the Taft Algebra $T_{m^{2}}(q)$ and the Group Hopf Algebra $K[C_{n}]$
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We completely describe by generators and relations and classify all Hopf algebras which factorize through the Taft algebra $T_{m^{2}}(q)$ and the group Hopf algebra $K[C_{n}]$: they are $nm^{2}$-dimensional quantum groups $T_{nm^{2}}^ {\omega}(q)$ associated to an $n$-th root of unity $\omega$. Furthermore, using Dirichlet's prime number theorem we are able to count the number of isomorphism types of such Hopf algebras. More precisely, if $d = {\rm gcd}(m,\nu(n))$ and $\frac{\nu(n)}{d} = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$ is the prime decomposition of $\frac{\nu(n)}{d}$ then the number of types of Hopf algebras that factorize through $T_{m^{2}}(q)$ and $K[C_n]$ is equal to $(\alpha_1 + 1)(\alpha_2 + 1) \cdots (\alpha_r + 1)$, where $\nu (n)$ is the order of the group of $n$-th roots of unity in $K$. As a consequence of our approach, the automorphism groups of these Hopf algebras are described as well.
Keywords: bicrossed product; the factorization problem; classification of Hopf algebras.
@article{SIGMA_2018_14_a26,
     author = {Ana-Loredana Agore},
     title = {Hopf {Algebras} which {Factorize} through the {Taft} {Algebra} $T_{m^{2}}(q)$ and the {Group} {Hopf} {Algebra} $K[C_{n}]$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a26/}
}
TY  - JOUR
AU  - Ana-Loredana Agore
TI  - Hopf Algebras which Factorize through the Taft Algebra $T_{m^{2}}(q)$ and the Group Hopf Algebra $K[C_{n}]$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a26/
LA  - en
ID  - SIGMA_2018_14_a26
ER  - 
%0 Journal Article
%A Ana-Loredana Agore
%T Hopf Algebras which Factorize through the Taft Algebra $T_{m^{2}}(q)$ and the Group Hopf Algebra $K[C_{n}]$
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a26/
%G en
%F SIGMA_2018_14_a26
Ana-Loredana Agore. Hopf Algebras which Factorize through the Taft Algebra $T_{m^{2}}(q)$ and the Group Hopf Algebra $K[C_{n}]$. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a26/

[1] Agore A. L., “Classifying bicrossed products of two Taft algebras”, J. Pure Appl. Algebra, 222 (2018), 914–930, arXiv: 1603.01854 | DOI | MR

[2] Agore A. L., Bontea C. G., Militaru G., “Classifying bicrossed products of Hopf algebras”, Algebr. Represent. Theory, 17 (2014), 227–264, arXiv: 1205.6110 | DOI | MR

[3] Agore A. L., Chirvăsitu A., Ion B., Militaru G., “Bicrossed products for finite groups”, Algebr. Represent. Theory, 12 (2009), 481–488, arXiv: math.GR/0703471 | DOI | MR

[4] Angiono I., Galindo C., Vendramin L., “Hopf braces and Yang–Baxter operators”, Proc. Amer. Math. Soc., 145 (2017), 1981–1995, arXiv: 1604.02098 | DOI | MR

[5] Apostol T. M., Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York–Heidelberg, 1976 | DOI | MR

[6] Bontea C.-G., “Classifying bicrossed products of two Sweedler's Hopf algebras”, Czechoslovak Math. J., 64 (2014), 419–431, arXiv: 1205.7010 | DOI | MR

[7] Caenepeel S., Ion B., Militaru G., Zhu S., “The factorization problem and the smash biproduct of algebras and coalgebras”, Algebr. Represent. Theory, 3 (2000), 19–42, arXiv: math.QA/9809063 | DOI | MR

[8] Cap A., Schichl H., Vanžura J., “On twisted tensor products of algebras”, Comm. Algebra, 23 (1995), 4701–4735 | DOI | MR

[9] Gelaki S., “Exact factorizations and extensions of fusion categories”, J. Algebra, 480 (2017), 505–518, arXiv: 1603.01568 | DOI | MR

[10] Jara P., López Peña J., Navarro G., Ştefan D., “On the classification of twisting maps between $K^n$ and $K^m$”, Algebr. Represent. Theory, 14 (2011), 869–895, arXiv: 0805.2874 | DOI | MR

[11] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR

[12] Keilberg M., “Automorphisms of the doubles of purely non-abelian finite groups”, Algebr. Represent. Theory, 18 (2015), 1267–1297, arXiv: 1311.0575 | DOI | MR

[13] Krop L., Radford D. E., “Finite-dimensional Hopf algebras of rank one in characteristic zero”, J. Algebra, 302 (2006), 214–230 | DOI | MR

[14] Majid S., “Matched pairs of Lie groups and {H}opf algebra bicrossproducts”, Nuclear Phys. B Proc. Suppl., 6 (1989), 422–424 | DOI | MR

[15] Majid S., “Physics for algebraists: noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction”, J. Algebra, 130 (1990), 17–64 | DOI | MR

[16] Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995 | DOI | MR

[17] Michor P. W., “Knit products of graded Lie algebras and groups”, Rend. Circ. Mat. Palermo (2) Suppl., 1990, no. 22, 171–175 | MR

[18] Molnar R. K., “Semi-direct products of Hopf algebras”, J. Algebra, 47 (1977), 29–51 | DOI | MR

[19] Ore O., “Structures and group theory. I”, Duke Math. J., 3 (1937), 149–174 | DOI | MR

[20] Scherotzke S., “Classification of pointed rank one Hopf algebras”, J. Algebra, 319 (2008), 2889–2912, arXiv: math.RA/0703601 | DOI | MR

[21] Takeuchi M., “Matched pairs of groups and bismash products of Hopf algebras”, Comm. Algebra, 9 (1981), 841–882 | DOI | MR

[22] Vaes S., Vainerman L., “Extensions of locally compact quantum groups and the bicrossed product construction”, Adv. Math., 175 (2003), 1–101, arXiv: math.OA/0101133 | DOI | MR

[23] Wang Z., You L., Chen H.-X., “Representations of Hopf–Ore extensions of group algebras and pointed Hopf algebras of rank one”, Algebr. Represent. Theory, 18 (2015), 801–830, arXiv: 1309.7442 | DOI | MR

[24] Zappa G., “Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro”, Atti Secondo Congresso Un. Mat. Ital. (Bologna, 1940), Edizioni Cremonense, Rome, 1942, 119–125 | MR