Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In our earlier article [Lett. Math. Phys. 107 (2017), 475–503], we explicitly described a topological Hopf algebroid playing the role of the noncommutative phase space of Lie algebra type. Ping Xu has shown that every deformation quantization leads to a Drinfeld twist of the associative bialgebroid of $h$-adic series of differential operators on a fixed Poisson manifold. In the case of linear Poisson structures, the twisted bialgebroid essentially coincides with our construction. Using our explicit description of the Hopf algebroid, we compute the corresponding Drinfeld twist explicitly as a product of two exponential expressions.
Keywords: deformation quantization; Hopf algebroid; noncommutative phase space; Drinfeld twist; linear Poisson structure.
@article{SIGMA_2018_14_a25,
     author = {Stjepan Meljanac and Zoran \v{S}koda},
     title = {Hopf {Algebroid} {Twists} for {Deformation} {Quantization} of {Linear} {Poisson} {Structures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a25/}
}
TY  - JOUR
AU  - Stjepan Meljanac
AU  - Zoran Škoda
TI  - Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a25/
LA  - en
ID  - SIGMA_2018_14_a25
ER  - 
%0 Journal Article
%A Stjepan Meljanac
%A Zoran Škoda
%T Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a25/
%G en
%F SIGMA_2018_14_a25
Stjepan Meljanac; Zoran Škoda. Hopf Algebroid Twists for Deformation Quantization of Linear Poisson Structures. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a25/

[1] Amelino-Camelia G., Arzano M., “Coproduct and star product in field theories on Lie-algebra noncommutative space-times”, Phys. Rev. D, 65 (2002), 084044, 8 pp., arXiv: hep-th/0105120 | DOI | MR

[2] Berezin F. A., “Some remarks about the associated envelope of a Lie algebra”, Funct. Anal. Appl., 1 (1967), 91–102 | DOI | MR

[3] Böhm G., “Internal bialgebroids, entwining structures and corings”, Algebraic Structures and their Representations, Contemp. Math., 376, Amer. Math. Soc., Providence, RI, 2005, 207–226, arXiv: math.QA/0311244 | DOI | MR

[4] Böhm G., “Hopf algebroids”, Handbook of Algebra, Handb. Algebr., 6, Elsevier/North-Holland, Amsterdam, 2009, 173–235, arXiv: 0805.3806 | DOI | MR

[5] Böhm G., Szlachányi K., “Hopf algebroid symmetry of abstract Frobenius extensions of depth 2”, Comm. Algebra, 32 (2004), 4433–4464, arXiv: math.QA/0305136 | DOI | MR

[6] Borowiec A., Pachoł A., “Twisted bialgebroids versus bialgebroids from a Drinfeld twist”, J. Phys. A: Math. Theor., 50 (2017), 055205, 17 pp., arXiv: 1603.09280 | DOI | MR

[7] Brzeziński T., Militaru G., “Bialgebroids, $\times_A$-bialgebras and duality”, J. Algebra, 251 (2002), 279–294, arXiv: math.QA/0012164 | DOI | MR

[8] Donin J., Mudrov A., “Quantum groupoids and dynamical categories”, J. Algebra, 296 (2006), 348–384, arXiv: math.QA/0311316 | DOI | MR

[9] Durov N., Meljanac S., Samsarov A., Škoda Z., “A universal formula for representing Lie algebra generators as formal power series with coefficients in the Weyl algebra”, J. Algebra, 309 (2007), 318–359, arXiv: math.RT/0604096 | DOI | MR

[10] Gutt S., “An explicit $^{\ast} $-product on the cotangent bundle of a Lie group”, Lett. Math. Phys., 7 (1983), 249–258 | DOI | MR

[11] Halliday S., Szabo R. J., “Noncommutative field theory on homogeneous gravitational waves”, J. Phys. A: Math. Gen., 39 (2006), 5189–5225, arXiv: hep-th/0602036 | DOI | MR

[12] Kowalzig N., Hopf algebroids and their cyclic theory, Ph.D. Thesis, Radboud University, Nijmegen, 2009

[13] Lu J. H., “Hopf algebroids and quantum groupoids”, Internat. J. Math., 7 (1996), 47–70, arXiv: q-alg/9505024 | DOI | MR

[14] Lukierski J., Škoda Z., Woronowicz M., “$\kappa$-deformed covariant quantum phase spaces as Hopf algebroids”, Phys. Lett. B, 750 (2015), 401–406, arXiv: 1507.02612 | DOI | MR

[15] Lukierski J., Škoda Z., Woronowicz M., “On Hopf algebroid structure of $\kappa$-deformed Heisenberg algebra”, Phys. Atomic Nuclei, 80 (2017), 569–578, arXiv: 1601.01590 | DOI

[16] Mack G., Schomerus V., “Quasi Hopf quantum symmetry in quantum theory”, Nuclear Phys. B, 370 (1992), 185–230 | DOI | MR

[17] Meljanac S., Škoda Z., Leibniz rules for enveloping algebras and a diagrammatic expansion, arXiv: 0711.0149

[18] Meljanac S., Škoda Z., Stojić M., “Lie algebra type noncommutative phase spaces are Hopf algebroids”, Lett. Math. Phys., 107 (2017), 475–503, arXiv: 1409.8188 | DOI | MR

[19] Meljanac S., Škoda Z., Svrtan D., “Exponential formulas and Lie algebra type star products”, SIGMA, 8 (2012), 013, 15 pp., arXiv: 1006.0478 | DOI | MR

[20] Petracci E., “Universal representations of Lie algebras by coderivations”, Bull. Sci. Math., 127 (2003), 439–465, arXiv: math.RT/0303020 | DOI | MR

[21] Sweedler M. E., “Groups of simple algebras”, Inst. Hautes Études Sci. Publ. Math., 1974, 79–189 | DOI | MR

[22] Škoda Z., “Heisenberg double versus deformed derivatives”, Internat. J. Modern Phys. A, 26 (2011), 4845–4854, arXiv: 0806.0978 | DOI | MR

[23] Škoda Z., Stojić M., “A two-sided ideal trick in Hopf algebroid axiomatics”, arXiv: 1610.03837

[24] Stojić M., Completed Hopf algebroids, Ph.D. Thesis, University of Zagreb, 2017 (in Croatian)

[25] Xu P., “Quantum groupoids”, Comm. Math. Phys., 216 (2001), 539–581, arXiv: math.QA/9905192 | DOI | MR