@article{SIGMA_2018_14_a23,
author = {\'Oscar Ciaurri and Judit M{\'\i}nguez},
title = {Fourier {Series} of {Gegenbauer{\textendash}Sobolev} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a23/}
}
Óscar Ciaurri; Judit Mínguez. Fourier Series of Gegenbauer–Sobolev Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a23/
[1] Bavinck H., Meijer H. G., “Orthogonal polynomials with respect to a symmetric inner product involving derivatives”, Appl. Anal., 33 (1989), 103–117 | DOI | MR
[2] Fejzullahu B. X., Marcellán F., “A Cohen type inequality for Gegenbauer–Sobolev expansions”, Rocky Mountain J. Math., 43 (2013), 135–148 | DOI | MR
[3] Guadalupe J. J., Pérez M., Ruiz F. J., Varona J. L., “Weighted $L^p$-boundedness of Fourier series with respect to generalized Jacobi weights”, Publ. Mat., 35 (1991), 449–459 | DOI | MR
[4] Guadalupe J. J., Pérez M., Ruiz F. J., Varona J. L., “Weighted norm inequalities for polynomial expansions associated to some measures with mass points”, Constr. Approx., 12 (1996), 341–360, arXiv: math.CA/9505214 | DOI | MR
[5] Marcellán F., Quintana Y., Urieles A., “On the Pollard decomposition method applied to some Jacobi–Sobolev expansions”, Turkish J. Math., 37 (2013), 934–948 | MR
[6] Marcellán F., Xu Y., “On Sobolev orthogonal polynomials”, Expo. Math., 33 (2015), 308–352, arXiv: 1403.6249 | DOI | MR
[7] Moreno A. F., Marcellán F., Osilenker B. P., “Estimates for polynomials orthogonal with respect to some Gegenbauer–Sobolev type inner product”, J. Inequal. Appl., 3 (1999), 401–419 | DOI | MR
[8] Muckenhoupt B., “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23 (1969), 306–310 | DOI | MR
[9] Muckenhoupt B., Transplantation theorems and multiplier theorems for Jacobi series, Mem. Amer. Math. Soc., 64, 1986, iv+86 pp. | DOI | MR
[10] Nevai P., “Mean convergence of Lagrange interpolation. III”, Trans. Amer. Math. Soc., 282 (1984), 669–698 | DOI | MR
[11] Pollard H., “The mean convergence of orthogonal series. II”, Trans. Amer. Math. Soc., 63 (1948), 355–367 | DOI | MR
[12] Pollard H., “The mean convergence of orthogonal series. III”, Duke Math. J., 16 (1949), 189–191 | DOI | MR
[13] Rodríguez J. M., Romera E., Pestana D., Alvarez V., “Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials. II”, Approx. Theory Appl., 18 (2002), 1–32 | DOI | MR
[14] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR
[15] Xu Y., “Mean convergence of generalized Jacobi series and interpolating polynomials. I”, J. Approx. Theory, 72 (1993), 237–251 | DOI | MR
[16] Xu Y., “Mean convergence of generalized Jacobi series and interpolating polynomials. II”, J. Approx. Theory, 76 (1994), 77–92 | DOI | MR