Fourier Series of Gegenbauer–Sobolev Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the partial sum operator for a Sobolev-type inner product related to the classical Gegenbauer polynomials. A complete characterization of the partial sum operator in an appropriate Sobolev space is given. Moreover, we analyze the convergence of the partial sum operators.
Keywords: Sobolev-type inner product; Sobolev polynomials; Gegenbauer polynomials; partial sum operator.
@article{SIGMA_2018_14_a23,
     author = {\'Oscar Ciaurri and Judit M{\'\i}nguez},
     title = {Fourier {Series} of {Gegenbauer{\textendash}Sobolev} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a23/}
}
TY  - JOUR
AU  - Óscar Ciaurri
AU  - Judit Mínguez
TI  - Fourier Series of Gegenbauer–Sobolev Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a23/
LA  - en
ID  - SIGMA_2018_14_a23
ER  - 
%0 Journal Article
%A Óscar Ciaurri
%A Judit Mínguez
%T Fourier Series of Gegenbauer–Sobolev Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a23/
%G en
%F SIGMA_2018_14_a23
Óscar Ciaurri; Judit Mínguez. Fourier Series of Gegenbauer–Sobolev Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a23/

[1] Bavinck H., Meijer H. G., “Orthogonal polynomials with respect to a symmetric inner product involving derivatives”, Appl. Anal., 33 (1989), 103–117 | DOI | MR

[2] Fejzullahu B. X., Marcellán F., “A Cohen type inequality for Gegenbauer–Sobolev expansions”, Rocky Mountain J. Math., 43 (2013), 135–148 | DOI | MR

[3] Guadalupe J. J., Pérez M., Ruiz F. J., Varona J. L., “Weighted $L^p$-boundedness of Fourier series with respect to generalized Jacobi weights”, Publ. Mat., 35 (1991), 449–459 | DOI | MR

[4] Guadalupe J. J., Pérez M., Ruiz F. J., Varona J. L., “Weighted norm inequalities for polynomial expansions associated to some measures with mass points”, Constr. Approx., 12 (1996), 341–360, arXiv: math.CA/9505214 | DOI | MR

[5] Marcellán F., Quintana Y., Urieles A., “On the Pollard decomposition method applied to some Jacobi–Sobolev expansions”, Turkish J. Math., 37 (2013), 934–948 | MR

[6] Marcellán F., Xu Y., “On Sobolev orthogonal polynomials”, Expo. Math., 33 (2015), 308–352, arXiv: 1403.6249 | DOI | MR

[7] Moreno A. F., Marcellán F., Osilenker B. P., “Estimates for polynomials orthogonal with respect to some Gegenbauer–Sobolev type inner product”, J. Inequal. Appl., 3 (1999), 401–419 | DOI | MR

[8] Muckenhoupt B., “Mean convergence of Jacobi series”, Proc. Amer. Math. Soc., 23 (1969), 306–310 | DOI | MR

[9] Muckenhoupt B., Transplantation theorems and multiplier theorems for Jacobi series, Mem. Amer. Math. Soc., 64, 1986, iv+86 pp. | DOI | MR

[10] Nevai P., “Mean convergence of Lagrange interpolation. III”, Trans. Amer. Math. Soc., 282 (1984), 669–698 | DOI | MR

[11] Pollard H., “The mean convergence of orthogonal series. II”, Trans. Amer. Math. Soc., 63 (1948), 355–367 | DOI | MR

[12] Pollard H., “The mean convergence of orthogonal series. III”, Duke Math. J., 16 (1949), 189–191 | DOI | MR

[13] Rodríguez J. M., Romera E., Pestana D., Alvarez V., “Generalized weighted Sobolev spaces and applications to Sobolev orthogonal polynomials. II”, Approx. Theory Appl., 18 (2002), 1–32 | DOI | MR

[14] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR

[15] Xu Y., “Mean convergence of generalized Jacobi series and interpolating polynomials. I”, J. Approx. Theory, 72 (1993), 237–251 | DOI | MR

[16] Xu Y., “Mean convergence of generalized Jacobi series and interpolating polynomials. II”, J. Approx. Theory, 76 (1994), 77–92 | DOI | MR