@article{SIGMA_2018_14_a22,
author = {Anatolij K. Prykarpatski},
title = {On the {Linearization} {Covering} {Technique} and its {Application} to {Integrable} {Nonlinear} {Differential} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a22/}
}
TY - JOUR AU - Anatolij K. Prykarpatski TI - On the Linearization Covering Technique and its Application to Integrable Nonlinear Differential Systems JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a22/ LA - en ID - SIGMA_2018_14_a22 ER -
%0 Journal Article %A Anatolij K. Prykarpatski %T On the Linearization Covering Technique and its Application to Integrable Nonlinear Differential Systems %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a22/ %G en %F SIGMA_2018_14_a22
Anatolij K. Prykarpatski. On the Linearization Covering Technique and its Application to Integrable Nonlinear Differential Systems. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a22/
[1] Baran H., Krasil'shchik I. S., Morozov O. I., Vojčák P., “Integrability properties of some equations obtained by symmetry reductions”, J. Nonlinear Math. Phys., 22 (2015), 210–232, arXiv: 1412.6461 | DOI | MR
[2] Blackmore D. L., Prykarpatska N. K., Samoylenko V. H., Wachnicki E., Pytel-Kudela M., “The Cartan–Monge geometric approach to the characteristic method for nonlinear partial differential equations of the first and higher orders”, Nonlinear Oscil., 10 (2007), 22-–31 | DOI | MR
[3] Bogdanov L. V., “Interpolating differential reductions of multidimensional integrable hierarchies”, Theoret. and Math. Phys., 167 (2011), 705–713, arXiv: 1011.0631 | DOI | MR
[4] Bogdanov L. V., Dryuma V. S., Manakov S. V., “Dunajski generalization of the second heavenly equation: dressing method and the hierarchy”, J. Phys. A: Math. Theor., 40 (2007), 14383–14393, arXiv: 0707.1675 | DOI | MR
[5] Bogdanov L. V., Konopelchenko B. G., “On the heavenly equation hierarchy and its reductions”, J. Phys. A: Math. Gen., 39 (2006), 11793–11802, arXiv: nlin.SI/0512074 | DOI | MR
[6] Bogdanov L. V., Pavlov M. V., “Linearly degenerate hierarchies of quasiclassical SDYM type”, J. Math. Phys., 58 (2017), 093505, 13 pp., arXiv: 1603.00238 | DOI | MR
[7] Bruce A. J., Grabowska K., Grabowski J., “Remarks on contact and Jacobi geometry”, SIGMA, 13 (2017), 059, 22 pp., arXiv: 1507.05405 | DOI | MR
[8] Burovskiy P. A., Ferapontov E. V., Tsarev S. P., “Second-order quasilinear PDEs and conformal structures in projective space”, Internat. J. Math., 21 (2010), 799–841, arXiv: 0802.2626 | DOI | MR
[9] Cartan H., Differential forms, Houghton Mifflin Co., Boston, Mass, 1970 | MR
[10] Dubrovin B. A., Fomenko A. T., Novikov S. P., “Modern geometry — methods and applications. Part I. The geometry of surfaces, transformation groups, and fields”, Graduate Texts in Mathematics, 93, 2nd ed., Springer-Verlag, New York, 1992 | DOI | MR
[11] Dunajski M., Ferapontov E. V., Kruglikov B., “On the Einstein–Weyl and conformal self-duality equations”, J. Math. Phys., 56 (2015), 083501, 10 pp., arXiv: 1406.0018 | DOI | MR
[12] Dunajski M., Kryński W., “Einstein–Weyl geometry, dispersionless Hirota equation and Veronese webs”, Math. Proc. Cambridge Philos. Soc., 157 (2014), 139–150, arXiv: 1301.0621 | DOI | MR
[13] Ferapontov E. V., Kruglikov B. S., “Dispersionless integrable systems in 3D and Einstein–Weyl geometry”, J. Differential Geom., 97 (2014), 215–254 , arXiv: http://projecteuclid.org/euclid.jdg/14054478051208.2728 | DOI | MR
[14] Ferapontov E. V., Kruglikov B. S., Novikov V., Integrability of dispersionless Hirota type equations in 4D and the symplectic Monge–Ampère property, arXiv: 1707.08070
[15] Gibbons J., Tsarev S. P., “Reductions of the Benney equations”, Phys. Lett. A, 211 (1996), 19–24 | DOI | MR
[16] Gibbons J., Tsarev S. P., “Conformal maps and reductions of the Benney equations”, Phys. Lett. A, 258 (1999), 263–271 | DOI | MR
[17] Godbillon C., Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969 | MR
[18] Gromov M., Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 9, Springer-Verlag, Berlin, 1986 | DOI | MR
[19] Hentosh O. E., Prykarpatsky Y. A., Blackmore D., Prykarpatski A. K., “Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d'Alembert principle”, J. Geom. Phys., 120 (2017), 208–227, arXiv: 1612.07760 | DOI | MR
[20] Kirillov A. A., “Local Lie algebras”, Russian Math. Surveys, 31:4 (1976), 55–75 | DOI | MR
[21] Krasil'shchik I. S., “A natural geometric construction underlying a class of Lax pairs”, Lobachevskii J. Math., 37 (2016), 60–65, arXiv: 1401.0612 | DOI | MR
[22] Krasil'shchik I. S., Sergyeyev A., Morozov O. I., “Infinitely many nonlocal conservation laws for the $ABC$ equation with $A+B+C\neq0$”, Calc. Var. Partial Differential Equations, 55 (2016), 123, 12 pp., arXiv: 1511.09430 | DOI | MR
[23] Manakov S. V., Santini P. M., “Cauchy problem on the plane for the dispersionless Kadomtsev–Petviashvili equation”, JETP Lett., 83 (2006), 462–466, arXiv: nlin.SI/0604023 | DOI
[24] Mokhov O. I., Symplectic and Poisson geometry on loop spaces of smooth manifolds and integrable equations, Contemporary Mathematics, Institute for Computer Studies Publ., Izhevsk, 2004 | MR
[25] Morozov O. I., Sergyeyev A., “The four-dimensional Martínez Alonso–Shabat equation: reductions and nonlocal symmetries”, J. Geom. Phys., 85 (2014), 40–45, arXiv: 1401.7942 | DOI | MR
[26] Odesskii A. V., Sokolov V. V., “Non-homogeneous systems of hydrodynamic type possessing Lax representations”, Comm. Math. Phys., 324 (2013), 47–62, arXiv: 1206.5230 | DOI | MR
[27] Sergyeyev A., “New integrable ($3+1$)-dimensional systems and contact geometry”, Lett. Math. Phys., 108 (2018), 359–376, arXiv: 1401.2122 | DOI | MR
[28] Szablikowski B. M., Błaszak M., “Meromorphic Lax representations of {$(1+1)$}-dimensional multi-Hamiltonian dispersionless systems”, J. Math. Phys., 47 (2006), 092701, 23 pp., arXiv: nlin.SI/0510068 | DOI | MR
[29] Takasaki K., Takebe T., “${\rm SDiff}(2)$ Toda equation – hierarchy, tau function, and symmetries”, Lett. Math. Phys., 23 (1991), 205–214, arXiv: hep-th/9112042 | DOI | MR
[30] Takasaki K., Takebe T., “Integrable hierarchies and dispersionless limit”, Rev. Math. Phys., 7 (1995), 743–808, arXiv: hep-th/9405096 | DOI | MR
[31] Zakharevich I., Nonlinear wave equation, nonlinear Riemann problem, and the twistor transform of Veronese webs, arXiv: math-ph/0006001
[32] Zakharov V. E., Shabat A. B., “Integration of nonlinear equations of mathematical physics by the method of inverse scattering. II”, Funct. Anal. Appl., 13 (1979), 166–174 | DOI | MR