@article{SIGMA_2018_14_a21,
author = {Allan P. Fordy and Qing Huang},
title = {Poisson {Algebras} and {3D} {Superintegrable} {Hamiltonian} {Systems}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a21/}
}
Allan P. Fordy; Qing Huang. Poisson Algebras and 3D Superintegrable Hamiltonian Systems. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a21/
[1] Cariglia M., “Hidden symmetries of dynamics in classical and quantum physics”, Rev. Modern Phys., 86 (2014), 1283–1333, arXiv: 1411.1262 | DOI
[2] Clarkson P. A., Olver P. J., “Symmetry and the Chazy equation”, J. Differential Equations, 124 (1996), 225–246 | DOI | MR
[3] Daskaloyannis C., Ypsilantis K., “Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold”, J. Math. Phys., 47 (2006), 042904, 38 pp., arXiv: math-ph/0412055 | DOI | MR
[4] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry – methods and applications, v. I, Graduate Texts in Mathematics, 93, The geometry of surfaces, transformation groups, and fields, Springer-Verlag, New York, 1984 | DOI | MR
[5] Eisenhart L. P., Riemannian geometry, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997 | MR
[6] Escobar-Ruiz M. A., Miller W. (Jr.), “Toward a classification of semidegenerate 3D superintegrable systems”, J. Phys. A: Math. Theor., 50 (2017), 095203, 22 pp., arXiv: 1611.02977 | DOI | MR
[7] Fordy A. P., “Quantum super-integrable systems as exactly solvable models”, SIGMA, 3 (2007), 025, 10 pp., arXiv: math-ph/0702048 | DOI | MR
[8] Fordy A. P., “A note on some superintegrable Hamiltonian systems”, J. Geom. Phys., 115 (2017), 98–103, arXiv: 1601.03079 | DOI | MR
[9] Fordy A. P., Scott M. J., “Recursive procedures for Krall–Sheffer operators”, J. Math. Phys., 54 (2013), 043516, 23 pp., arXiv: 1211.3075 | DOI | MR
[10] Gilmore R., Lie groups, Lie algebras, and some of their applications, Wiley, New York, 1974 | MR
[11] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Fine structure for 3D second-order superintegrable systems: three-parameter potentials”, J. Phys. A: Math. Theor., 40 (2007), 5875–5892 | DOI | MR
[12] Landau L. D., Lifshitz E. M., Mechanics, Course of Theoretical Physics, v. 1, Mechanics, Pergamon Press, Oxford, 1976 | MR
[13] Marshall I., Wojciechowski S., When is a Hamiltonian system separable?, J. Math. Phys., 29 (1988), 1338–1346 | DOI | MR
[14] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR
[15] Smirnov R. G., “The classical Bertrand–Darboux problem”, J. Math. Sci., 151 (2008), 3230–3244, arXiv: math-ph/0604038 | DOI | MR
[16] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies, Cambridge University Press, Cambridge, 1988 | DOI | MR