Poisson Algebras and 3D Superintegrable Hamiltonian Systems
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using a Poisson bracket representation, in 3D, of the Lie algebra $\mathfrak{sl}(2)$, we first use highest weight representations to embed this into larger Lie algebras. These are then interpreted as symmetry and conformal symmetry algebras of the “kinetic energy”, related to the quadratic Casimir function. We then consider the potentials which can be added, whilst remaining integrable, leading to families of separable systems, depending upon arbitrary functions of a single variable. Adding further integrals, in the superintegrable case, restricts these functions to specific forms, depending upon a finite number of arbitrary parameters. The Poisson algebras of these superintegrable systems are studied. The automorphisms of the symmetry algebra of the kinetic energy are extended to the full Poisson algebra, enabling us to build the full set of Poisson relations.
Keywords: Hamiltonian system; super-integrability; Poisson algebra; conformal algebra; constant curvature.
@article{SIGMA_2018_14_a21,
     author = {Allan P. Fordy and Qing Huang},
     title = {Poisson {Algebras} and {3D} {Superintegrable} {Hamiltonian} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a21/}
}
TY  - JOUR
AU  - Allan P. Fordy
AU  - Qing Huang
TI  - Poisson Algebras and 3D Superintegrable Hamiltonian Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a21/
LA  - en
ID  - SIGMA_2018_14_a21
ER  - 
%0 Journal Article
%A Allan P. Fordy
%A Qing Huang
%T Poisson Algebras and 3D Superintegrable Hamiltonian Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a21/
%G en
%F SIGMA_2018_14_a21
Allan P. Fordy; Qing Huang. Poisson Algebras and 3D Superintegrable Hamiltonian Systems. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a21/

[1] Cariglia M., “Hidden symmetries of dynamics in classical and quantum physics”, Rev. Modern Phys., 86 (2014), 1283–1333, arXiv: 1411.1262 | DOI

[2] Clarkson P. A., Olver P. J., “Symmetry and the Chazy equation”, J. Differential Equations, 124 (1996), 225–246 | DOI | MR

[3] Daskaloyannis C., Ypsilantis K., “Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold”, J. Math. Phys., 47 (2006), 042904, 38 pp., arXiv: math-ph/0412055 | DOI | MR

[4] Dubrovin B. A., Fomenko A. T., Novikov S. P., Modern geometry – methods and applications, v. I, Graduate Texts in Mathematics, 93, The geometry of surfaces, transformation groups, and fields, Springer-Verlag, New York, 1984 | DOI | MR

[5] Eisenhart L. P., Riemannian geometry, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997 | MR

[6] Escobar-Ruiz M. A., Miller W. (Jr.), “Toward a classification of semidegenerate 3D superintegrable systems”, J. Phys. A: Math. Theor., 50 (2017), 095203, 22 pp., arXiv: 1611.02977 | DOI | MR

[7] Fordy A. P., “Quantum super-integrable systems as exactly solvable models”, SIGMA, 3 (2007), 025, 10 pp., arXiv: math-ph/0702048 | DOI | MR

[8] Fordy A. P., “A note on some superintegrable Hamiltonian systems”, J. Geom. Phys., 115 (2017), 98–103, arXiv: 1601.03079 | DOI | MR

[9] Fordy A. P., Scott M. J., “Recursive procedures for Krall–Sheffer operators”, J. Math. Phys., 54 (2013), 043516, 23 pp., arXiv: 1211.3075 | DOI | MR

[10] Gilmore R., Lie groups, Lie algebras, and some of their applications, Wiley, New York, 1974 | MR

[11] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Fine structure for 3D second-order superintegrable systems: three-parameter potentials”, J. Phys. A: Math. Theor., 40 (2007), 5875–5892 | DOI | MR

[12] Landau L. D., Lifshitz E. M., Mechanics, Course of Theoretical Physics, v. 1, Mechanics, Pergamon Press, Oxford, 1976 | MR

[13] Marshall I., Wojciechowski S., When is a Hamiltonian system separable?, J. Math. Phys., 29 (1988), 1338–1346 | DOI | MR

[14] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR

[15] Smirnov R. G., “The classical Bertrand–Darboux problem”, J. Math. Sci., 151 (2008), 3230–3244, arXiv: math-ph/0604038 | DOI | MR

[16] Whittaker E. T., A treatise on the analytical dynamics of particles and rigid bodies, Cambridge University Press, Cambridge, 1988 | DOI | MR