Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present applications of the notion of isomorphic vector fields to the study of nonlinear stability of relative equilibria. Isomorphic vector fields were introduced by Hepworth [Theory Appl. Categ. 22 (2009), 542–587] in his study of vector fields on differentiable stacks. Here we argue in favor of the usefulness of replacing an equivariant vector field by an isomorphic one to study nonlinear stability of relative equilibria. In particular, we use this idea to obtain a criterion for nonlinear stability. As an application, we offer an alternative proof of Montaldi and Rodríguez-Olmos's criterion [arXiv:1509.04961] for stability of Hamiltonian relative equilibria.
Keywords: equivariant dynamics; relative equilibria; orbital stability; Hamiltonian systems.
@article{SIGMA_2018_14_a20,
     author = {Stefan Klajbor-Goderich},
     title = {Nonlinear {Stability} of {Relative} {Equilibria} and {Isomorphic} {Vector} {Fields}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a20/}
}
TY  - JOUR
AU  - Stefan Klajbor-Goderich
TI  - Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a20/
LA  - en
ID  - SIGMA_2018_14_a20
ER  - 
%0 Journal Article
%A Stefan Klajbor-Goderich
%T Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a20/
%G en
%F SIGMA_2018_14_a20
Stefan Klajbor-Goderich. Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a20/

[1] Abraham R., Marsden J. E., Ratiu T., Manifolds, tensor analysis, and applications, Applied Mathematical Sciences, 75, 2nd ed., Springer-Verlag, New York, 1988 | DOI | MR

[2] Chossat P., Lauterbach R., Methods in equivariant bifurcations and dynamical systems, Advanced Series in Nonlinear Dynamics, 15, World Sci. Publ. Co., Inc., River Edge, NJ, 2000 | DOI | MR

[3] Duistermaat J. J., Fourier integral operators, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2011 | DOI | MR

[4] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR

[5] Field M. J., Dynamics and symmetry, ICP Advanced Texts in Mathematics, 3, Imperial College Press, London, 2007 | DOI | MR

[6] Golubitsky M., Stewart I., The symmetry perspective. From equilibrium to chaos in phase space and physical space, Progress in Mathematics, 200, Birkhäuser Verlag, Basel, 2002 | DOI | MR

[7] Guillemin V., Ginzburg V., Karshon Y., Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs, 98, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR

[8] Guillemin V., Sternberg S., “A normal form for the moment map”, Differential Geometric Methods in Mathematical Physics (Jerusalem, 1982), Math. Phys. Stud., 6, Reidel, Dordrecht, 1984, 161–175 | MR

[9] Hepworth R., “Vector fields and flows on differentiable stacks”, Theory Appl. Categ., 22 (2009), 542–587, arXiv: 0810.0979 | MR

[10] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | MR

[11] Krupa M., “Bifurcations of relative equilibria”, SIAM J. Math. Anal., 21 (1990), 1453–1486 | DOI | MR

[12] Lerman E., “Invariant vector fields and groupoids”, Int. Math. Res. Not., 2015 (2015), 7394–7416, arXiv: 1307.7733 | DOI | MR

[13] Lerman E., Singer S. F., “Stability and persistence of relative equilibria at singular values of the moment map”, Nonlinearity, 11 (1998), 1637–1649 | DOI | MR

[14] Marle C.-M., “Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique”, Rend. Sem. Mat. Univ. Politec. Torino, 43 (1985), 227–251 | MR

[15] Marsden J. E., Lectures on mechanics, London Mathematical Society Lecture Note Series, 174, Cambridge University Press, Cambridge, 1992 | DOI | MR

[16] Montaldi J., Rodríguez-Olmos M., Hamiltonian relative equilibria with continuous isotropy, arXiv: 1509.04961

[17] Montaldi J., Rodríguez-Olmos M., “On the stability of Hamiltonian relative equilibria with non-trivial isotropy”, Nonlinearity, 24 (2011), 2777–2783, arXiv: 1011.1130 | DOI | MR

[18] Ortega J.-P., Ratiu T. S., “Stability of Hamiltonian relative equilibria”, Nonlinearity, 12 (1999), 693–720 | DOI | MR

[19] Ortega J.-P., Ratiu T. S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR

[20] Palais R. S., “On the existence of slices for actions of non-compact Lie groups”, Ann. of Math., 73 (1961), 295–323 | DOI | MR

[21] Patrick G. W., Two axially symmetric coupled rigid bodies: Relative equilibria, stability, bifurcations, and a momentum preserving symplectic integrator, Ph.D. Thesis, University of California, Berkeley, 1991 | MR

[22] Patrick G. W., “Relative equilibria of Hamiltonian systems with symmetry: linearization, smoothness, and drift”, J. Nonlinear Sci., 5 (1995), 373–418 | DOI | MR

[23] Roberts M., Wulff C., Lamb J. S. W., “Hamiltonian systems near relative equilibria”, J. Differential Equations, 179 (2002), 562–604 | DOI | MR

[24] Roberts R. M., de Sousa Dias M. E. R., “Bifurcations from relative equilibria of Hamiltonian systems”, Nonlinearity, 10 (1997), 1719–1738 | DOI | MR

[25] Wulff C., Patrick G., Roberts M., “Stability of Hamiltonian relative equilibria by energy methods”, Symmetry and Perturbation Theory (Cala Gononoe, 2001), World Sci. Publ., River Edge, NJ, 2001, 214–221 | DOI | MR