@article{SIGMA_2018_14_a20,
author = {Stefan Klajbor-Goderich},
title = {Nonlinear {Stability} of {Relative} {Equilibria} and {Isomorphic} {Vector} {Fields}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a20/}
}
Stefan Klajbor-Goderich. Nonlinear Stability of Relative Equilibria and Isomorphic Vector Fields. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a20/
[1] Abraham R., Marsden J. E., Ratiu T., Manifolds, tensor analysis, and applications, Applied Mathematical Sciences, 75, 2nd ed., Springer-Verlag, New York, 1988 | DOI | MR
[2] Chossat P., Lauterbach R., Methods in equivariant bifurcations and dynamical systems, Advanced Series in Nonlinear Dynamics, 15, World Sci. Publ. Co., Inc., River Edge, NJ, 2000 | DOI | MR
[3] Duistermaat J. J., Fourier integral operators, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2011 | DOI | MR
[4] Duistermaat J. J., Kolk J. A. C., Lie groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR
[5] Field M. J., Dynamics and symmetry, ICP Advanced Texts in Mathematics, 3, Imperial College Press, London, 2007 | DOI | MR
[6] Golubitsky M., Stewart I., The symmetry perspective. From equilibrium to chaos in phase space and physical space, Progress in Mathematics, 200, Birkhäuser Verlag, Basel, 2002 | DOI | MR
[7] Guillemin V., Ginzburg V., Karshon Y., Moment maps, cobordisms, and Hamiltonian group actions, Mathematical Surveys and Monographs, 98, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR
[8] Guillemin V., Sternberg S., “A normal form for the moment map”, Differential Geometric Methods in Mathematical Physics (Jerusalem, 1982), Math. Phys. Stud., 6, Reidel, Dordrecht, 1984, 161–175 | MR
[9] Hepworth R., “Vector fields and flows on differentiable stacks”, Theory Appl. Categ., 22 (2009), 542–587, arXiv: 0810.0979 | MR
[10] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | MR
[11] Krupa M., “Bifurcations of relative equilibria”, SIAM J. Math. Anal., 21 (1990), 1453–1486 | DOI | MR
[12] Lerman E., “Invariant vector fields and groupoids”, Int. Math. Res. Not., 2015 (2015), 7394–7416, arXiv: 1307.7733 | DOI | MR
[13] Lerman E., Singer S. F., “Stability and persistence of relative equilibria at singular values of the moment map”, Nonlinearity, 11 (1998), 1637–1649 | DOI | MR
[14] Marle C.-M., “Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique”, Rend. Sem. Mat. Univ. Politec. Torino, 43 (1985), 227–251 | MR
[15] Marsden J. E., Lectures on mechanics, London Mathematical Society Lecture Note Series, 174, Cambridge University Press, Cambridge, 1992 | DOI | MR
[16] Montaldi J., Rodríguez-Olmos M., Hamiltonian relative equilibria with continuous isotropy, arXiv: 1509.04961
[17] Montaldi J., Rodríguez-Olmos M., “On the stability of Hamiltonian relative equilibria with non-trivial isotropy”, Nonlinearity, 24 (2011), 2777–2783, arXiv: 1011.1130 | DOI | MR
[18] Ortega J.-P., Ratiu T. S., “Stability of Hamiltonian relative equilibria”, Nonlinearity, 12 (1999), 693–720 | DOI | MR
[19] Ortega J.-P., Ratiu T. S., Momentum maps and Hamiltonian reduction, Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR
[20] Palais R. S., “On the existence of slices for actions of non-compact Lie groups”, Ann. of Math., 73 (1961), 295–323 | DOI | MR
[21] Patrick G. W., Two axially symmetric coupled rigid bodies: Relative equilibria, stability, bifurcations, and a momentum preserving symplectic integrator, Ph.D. Thesis, University of California, Berkeley, 1991 | MR
[22] Patrick G. W., “Relative equilibria of Hamiltonian systems with symmetry: linearization, smoothness, and drift”, J. Nonlinear Sci., 5 (1995), 373–418 | DOI | MR
[23] Roberts M., Wulff C., Lamb J. S. W., “Hamiltonian systems near relative equilibria”, J. Differential Equations, 179 (2002), 562–604 | DOI | MR
[24] Roberts R. M., de Sousa Dias M. E. R., “Bifurcations from relative equilibria of Hamiltonian systems”, Nonlinearity, 10 (1997), 1719–1738 | DOI | MR
[25] Wulff C., Patrick G., Roberts M., “Stability of Hamiltonian relative equilibria by energy methods”, Symmetry and Perturbation Theory (Cala Gononoe, 2001), World Sci. Publ., River Edge, NJ, 2001, 214–221 | DOI | MR