@article{SIGMA_2018_14_a2,
author = {John Alexander Cruz Morales and Hossein Movasati and Younes Nikdelan and Raij Roychowdhury and Marcus A. C. Torres},
title = {Manifold {Ways} to {Darboux{\textendash}Halphen} {System}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a2/}
}
TY - JOUR AU - John Alexander Cruz Morales AU - Hossein Movasati AU - Younes Nikdelan AU - Raij Roychowdhury AU - Marcus A. C. Torres TI - Manifold Ways to Darboux–Halphen System JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a2/ LA - en ID - SIGMA_2018_14_a2 ER -
%0 Journal Article %A John Alexander Cruz Morales %A Hossein Movasati %A Younes Nikdelan %A Raij Roychowdhury %A Marcus A. C. Torres %T Manifold Ways to Darboux–Halphen System %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a2/ %G en %F SIGMA_2018_14_a2
John Alexander Cruz Morales; Hossein Movasati; Younes Nikdelan; Raij Roychowdhury; Marcus A. C. Torres. Manifold Ways to Darboux–Halphen System. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a2/
[1] Ablowitz M. J., Chakravarty S., Halburd R., “On Painlevé and Darboux–Halphen-type equations”, The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 573–589 | MR | Zbl
[2] Alim M., Movasati H., Scheidegger E., Yau S. T., “Gauss–Manin connection in disguise: Calabi–Yau threefolds”, Comm. Math. Phys., 344 (2016), 889–914, arXiv: 1410.1889 | DOI | MR | Zbl
[3] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988 | DOI | MR | Zbl
[4] Babich M. V., Korotkin D. A., “Self-dual ${\rm SU}(2)$-invariant Einstein metrics and modular dependence of theta functions”, Lett. Math. Phys., 46 (1998), 323–337, arXiv: gr-qc/9810025 | DOI | MR | Zbl
[5] Belavin A. A., Polyakov A. M., Schwartz A. S., Tyupkin Yu. S., “Pseudoparticle solutions of the Yang–Mills equations”, Phys. Lett. B, 59 (1975), 85–87 | DOI | MR
[6] Bianchi L., “On the three-dimensional spaces which admit a continuous group of motions”, Gen. Relativity Gravitation, 33 (2001), 2171–2253 | DOI | MR | Zbl
[7] Bruinier J. H., van der Geer G., Harder G., Zagier D., The 1–2-3 of modular forms, Universitext, Springer-Verlag, Berlin, 2008 | DOI | MR | Zbl
[8] Chanda S., Guha P., Roychowdhury R., “Bianchi-IX, Darboux–Halphen and Chazy–Ramanujan”, Int. J. Geom. Methods Mod. Phys., 13 (2016), 1650042, 25 pp., arXiv: 1512.01662 | DOI | MR | Zbl
[9] Darboux G., “Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux”, Ann. Sci. École Norm. Sup. (2), 7 (1878), 101–150 | DOI | MR
[10] Dijkgraaf R., Verlinde H., Verlinde E., “Notes on topological string theory and $2$D quantum gravity”, String Theory and Quantum Gravity (Trieste, 1990), World Sci. Publ., River Edge, NJ, 1991, 91–156 | MR
[11] Dubrovin B., “Integrable systems in topological field theory”, Nuclear Phys. B, 379 (1992), 627–689, arXiv: hep-th/9209040 | DOI | MR
[12] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[13] Eguchi T., Hanson A. J., “Self-dual solutions to Euclidean gravity”, Ann. Physics, 120 (1979), 82–106 | DOI | MR | Zbl
[14] Gibbons G. W., Pope C. N., “The positive action conjecture and asymptotically Euclidean metrics in quantum gravity”, Comm. Math. Phys., 66 (1979), 267–290 | DOI | MR
[15] Halphen G., “Sur une système d'équations différentielles”, C.R. Acad. Sci. Paris, 92 (1881), 1101–1103
[16] Halphen G., Traité des fonctions elliptiques et de leurs applications, v. 1, Gauthier Villars, Paris, 1886
[17] Hitchin N. J., “Monopoles and geodesics”, Comm. Math. Phys., 83 (1982), 579–602 | DOI | MR | Zbl
[18] Hitchin N. J., “On the construction of monopoles”, Comm. Math. Phys., 89 (1983), 145–190 | DOI | MR | Zbl
[19] Hitchin N. J., “Twistor spaces, Einstein metrics and isomonodromic deformations”, J. Differential Geom., 42 (1995), 30–112 | DOI | MR | Zbl
[20] Hurtubise J., “${\rm SU}(2)$ monopoles of charge $2$”, Comm. Math. Phys., 92 (1983), 195–202 | DOI | MR
[21] Manin Y., Marcolli M., “Symbolic dynamics, modular curves, and Bianchi IX cosmologies”, Ann. Fac. Sci. Toulouse Math. (6), 25 (2016), 517–542, arXiv: 1504.04005 | DOI | MR | Zbl
[22] Morrison E. K., Strachan I. A. B., “Polynomial modular Frobenius manifolds”, Phys. D, 241 (2012), 2145–2155, arXiv: 1110.4021 | DOI | MR | Zbl
[23] Movasati H., Multiple integrals and modular differential equations, Publicações Matemáticas do IMPA, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2011 | MR | Zbl
[24] Movasati H., “Quasi-modular forms attached to elliptic curves, I”, Ann. Math. Blaise Pascal, 19 (2012), 307–377, arXiv: 1110.3664 | DOI | MR | Zbl
[25] Movasati H., “Modular-type functions attached to mirror quintic Calabi–Yau varieties”, Math. Z., 281 (2015), 907–929, arXiv: 1111.0357 | DOI | MR | Zbl
[26] Petropoulos P. M., Vanhove P., “Gravity, strings, modular and quasimodular forms”, Ann. Math. Blaise Pascal, 19 (2012), 379–430, arXiv: 1206.0571 | DOI | MR | Zbl
[27] Ramanujan S., “On certain arithmetical functions”, Trans. Cambridge Philos. Soc., 22 (1916), 159–186
[28] Tod K. P., “Self-dual Einstein metrics from the Painlevé VI equation”, Phys. Lett. A, 190 (1994), 221–224 | DOI | MR | Zbl
[29] Torres M. A. C., Metric in the moduli of ${\rm SU}(2)$ monopoles from spectral curves and Gauss–Manin connection in disguise, arXiv: 1709.01545
[30] Witten E., “On the structure of the topological phase of two-dimensional gravity”, Nuclear Phys. B, 340 (1990), 281–332 | DOI | MR