Special Solutions of Bi-Riccati Delay-Differential Equations
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Delay-differential equations are functional differential equations that involve shifts and derivatives with respect to a single independent variable. Some integrability candidates in this class have been identified by various means. For three of these equations we consider their elliptic and soliton-type solutions. Using Hirota's bilinear method, we find that two of our equations possess three-soliton-type solutions.
Keywords: delay-differential equations; elliptic solutions; solitons.
@article{SIGMA_2018_14_a19,
     author = {Bjorn K. Berntson},
     title = {Special {Solutions} of {Bi-Riccati} {Delay-Differential} {Equations}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a19/}
}
TY  - JOUR
AU  - Bjorn K. Berntson
TI  - Special Solutions of Bi-Riccati Delay-Differential Equations
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a19/
LA  - en
ID  - SIGMA_2018_14_a19
ER  - 
%0 Journal Article
%A Bjorn K. Berntson
%T Special Solutions of Bi-Riccati Delay-Differential Equations
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a19/
%G en
%F SIGMA_2018_14_a19
Bjorn K. Berntson. Special Solutions of Bi-Riccati Delay-Differential Equations. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a19/

[1] Ablowitz M. J., Satsuma J., “Solitons and rational solutions of nonlinear evolution equations”, J. Math. Phys., 19 (1978), 2180–2186 | DOI | MR

[2] Babalic C. N., Carstea A. S., “On some new forms of lattice integrable equations”, Cent. Eur. J. Phys., 12 (2014), 341–347, arXiv: 1508.04998 | DOI

[3] Berntson B. K., Integrable delay-differential equations, Ph.D. Thesis, University College London, 2017

[4] Berntson B. K., Halburd R., Integrable delay-differential equations, in preparation

[5] Brezhnev Y., Leble S., On integration of the closed KdV dressing chain, arXiv: math-ph/0502052

[6] Carstea A. S., “Bilinear approach to delay-Painlevé equations”, J. Phys. A: Math. Theor., 44 (2011), 105202, 7 pp. | DOI | MR

[7] Dai C. Q., Cen X., Wu S.S., “Exact travelling wave solutions of the discrete sine-Gordon equation obtained via the exp-function method”, Nonlinear Anal., 70 (2009), 58–63 | DOI | MR

[8] Grammaticos B., Ramani A., Moreira I. C., “Delay-differential equations and the Painlevé transcendents”, Phys. A, 196 (1993), 574–590 | DOI | MR

[9] Hietarinta J., “Introduction to the Hirota bilinear method”, Integrability of Nonlinear Systems (Pondicherry, 1996), Lecture Notes in Phys., 495, Springer, Berlin, 1997, 95–103, arXiv: solv-int/9708006 | DOI | MR

[10] Hille E., Analytic function theory, v. I, AMS Chelsea Publishing Series, 269, Amer. Math. Soc., Providence, RI, 2012

[11] Joshi N., “Direct ‘delay’ reductions of the Toda equation”, J. Phys. A: Math. Theor., 42 (2009), 022001, 8 pp., arXiv: 0810.5581 | DOI | MR

[12] Quispel G. R. W., Capel H. W., Sahadevan R., “Continuous symmetries of differential-difference equations: the Kac–van Moerbeke equation and Painlevé reduction”, Phys. Lett. A, 170 (1992), 379–383 | DOI | MR

[13] Quispel G. R. W., Roberts J. A. G., Thompson C. J., “Integrable mappings and soliton equations”, Phys. Lett. A, 126 (1988), 419–421 | DOI | MR

[14] Ramani A., Grammaticos B., Tamizhmani K. M., “Painlevé analysis and singularity confinement: the ultimate conjecture”, J. Phys. A: Math. Gen., 26 (1993), L53–L58 | DOI | MR

[15] vom Hofe R., Grundvorstellungen mathematischer Inhalte, Texte zur Didaktik der Mathematik, Spektrum Akademischer Verlag GmbH, Heidelberg, 1995 | MR