@article{SIGMA_2018_14_a18,
author = {Eric M. Rains},
title = {Multivariate {Quadratic} {Transformations} and the {Interpolation} {Kernel}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a18/}
}
Eric M. Rains. Multivariate Quadratic Transformations and the Interpolation Kernel. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a18/
[1] Betea D., Wheeler M., Zinn-Justin P., “Refined {C}auchy/{L}ittlewood identities and six-vertex model partition functions: II. Proofs and new conjectures”, J. Algebraic Combin., 42 (2015), 555–603, arXiv: 1405.7035 | DOI | MR
[2] de Bruijn N. G., “On some multiple integrals involving determinants”, J. Indian Math. Soc. (N.S.), 19 (1955), 133–151 | MR
[3] van de Bult F. J., “An elliptic hypergeometric integral with $W(F_4)$ symmetry”, Ramanujan J., 25 (2011), 1–20, arXiv: 0909.4793 | DOI | MR
[4] van de Bult F. J., Two multivariate quadratic transformations of elliptic hypergeometric integrals, arXiv: 1109.1123
[5] van de Bult F. J., “Elliptic hypergeometric functions”, Symmetries and Integrability of Difference Equations, CRM Ser. Math. Phys., Springer, Cham, 2017, 43–74 | DOI | MR
[6] van de Bult F. J., Rains E. M., Limits of multivariate elliptic hypergeometric biorthogonal functions, arXiv: 1110.1458 | MR
[7] Cooper S., “The Askey–Wilson operator and the ${}_6\Phi_5$ summation formula”, South East Asian J. Math. Math. Sci., 1 (2002), 71–82 | MR
[8] Derkachev S. E., Spiridonov V. P., “The Yang–Baxter equation, parameter permutations, and the elliptic beta integral”, Russian Math. Surveys, 68 (2013), 1027–1072, arXiv: 1205.3520 | DOI | MR
[9] van Diejen J. F., “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35 (1994), 2983–3004 | DOI | MR
[10] van Diejen J. F., Spiridonov V. P., “An elliptic Macdonald–Morris conjecture and multiple modular hypergeometric sums”, Math. Res. Lett., 7 (2000), 729–746 | DOI | MR
[11] van Diejen J. F., Spiridonov V. P., “Elliptic Selberg integrals”, Internat. Math. Res. Notices, 2001 (2001), 1083–1110 | DOI | MR
[12] Filali G., “Elliptic dynamical reflection algebra and partition function of SOS model with reflecting end”, J. Geom. Phys., 61 (2011), 1789–1796, arXiv: 1012.0516 | DOI | MR
[13] Frenkel I. B., Turaev V. G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR
[14] Gustafson R. A., “A generalization of Selberg's beta integral”, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 97–105 | DOI | MR
[15] Ismail M., Rains E. M., Stanton D., Orthogonality of very well-poised series, in preparation
[16] Izergin A. G., “Partition function of a six-vertex model in a finite volume”, Dokl. Akad. Nauk SSSR, 297 (1987), 331–333 | MR
[17] Kawanaka N., “A $q$-series identity involving Schur functions and related topics”, Osaka J. Math., 36 (1999), 157–176 | MR
[18] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type $BC$”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | DOI | MR
[19] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR
[20] Langer R., Schlosser M. J., Warnaar S. O., “Theta functions, elliptic hypergeometric series, and Kawanaka's Macdonald polynomial conjecture”, SIGMA, 5 (2009), 055, 20 pp., arXiv: 0905.4033 | DOI | MR
[21] Okada S., “Applications of minor summation formulas to rectangular-shaped representations of classical groups”, J. Algebra, 205 (1998), 337–367 | DOI | MR
[22] Okounkov A., “${\rm BC}$-type interpolation Macdonald polynomials and binomial formula for {K}oornwinder polynomials”, Transform. Groups, 3 (1998), 181–207, arXiv: q-alg/9611011 | DOI | MR
[23] Rains E. M., Ruijsenaars S., “Difference operators of Sklyanin and van Diejen type”, Comm. Math. Phys., 320 (2013), 851–889, arXiv: 1203.0042 | DOI | MR
[24] Rains E. M., “${\rm BC}_n$-symmetric polynomials”, Transform. Groups, 10 (2005), 63–132, arXiv: math.QA/0112035 | DOI | MR
[25] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR
[26] Rains E. M., “A difference-integral representation of Koornwinder polynomials”, Jack, Hall–Littlewood and Macdonald Polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 319–333, arXiv: math.CA/0409437 | DOI | MR
[27] Rains E. M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math., 171 (2010), 169–243, arXiv: math.QA/0309252 | DOI | MR
[28] Rains E. M., “Elliptic Littlewood identities”, J. Combin. Theory Ser. A, 119 (2012), 1558–1609, arXiv: 0806.0871 | DOI | MR
[29] Rains E. M., Vazirani M., “Vanishing integrals of Macdonald and Koornwinder polynomials”, Transform. Groups, 12 (2007), 725–759 | DOI | MR
[30] Rains E. M., Elliptic double affine Hecke algebras, arXiv: 1709.02989
[31] Spiridonov V. P., “On the elliptic beta function”, Russian Math. Surveys, 56 (2001), 185–186 | DOI | MR
[32] Spiridonov V. P., “A Bailey tree for integrals”, Theoret. and Math. Phys., 139 (2004), 536–541, arXiv: math.CA/0312502 | DOI | MR
[33] Spiridonov V. P., Warnaar S. O., “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207 (2006), 91–132, arXiv: math.CA/0411044 | DOI | MR
[34] Tate J., “A review of non-Archimedean elliptic functions”, Elliptic Curves, Modular Forms, Fermat's Last Theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, 162–184 | MR
[35] Warnaar S. O., “Bisymmetric functions, Macdonald polynomials and $\mathfrak{sl}_3$ basic hypergeometric series”, Compos. Math., 144 (2008), 271–303, arXiv: math.CO/0511333 | DOI | MR
[36] Zinn-Justin P., “Sum rule for the eight-vertex model on its combinatorial line”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013, 599–637, arXiv: . 1202.4420 | DOI | MR