Multivariate Quadratic Transformations and the Interpolation Kernel
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove a number of quadratic transformations of elliptic Selberg integrals (conjectured in an earlier paper of the author), as well as studying in depth the “interpolation kernel”, an analytic continuation of the author's elliptic interpolation functions which plays a major role in the proof as well as acting as the kernel for a Fourier transform on certain elliptic double affine Hecke algebras (discussed in a later paper). In the process, we give a number of examples of a new approach to proving elliptic hypergeometric integral identities, by reduction to a Zariski dense subset of a formal neighborhood of the trigonometric limit.
Keywords: quadratic transformations; elliptic special functions.
@article{SIGMA_2018_14_a18,
     author = {Eric M. Rains},
     title = {Multivariate {Quadratic} {Transformations} and the {Interpolation} {Kernel}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a18/}
}
TY  - JOUR
AU  - Eric M. Rains
TI  - Multivariate Quadratic Transformations and the Interpolation Kernel
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a18/
LA  - en
ID  - SIGMA_2018_14_a18
ER  - 
%0 Journal Article
%A Eric M. Rains
%T Multivariate Quadratic Transformations and the Interpolation Kernel
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a18/
%G en
%F SIGMA_2018_14_a18
Eric M. Rains. Multivariate Quadratic Transformations and the Interpolation Kernel. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a18/

[1] Betea D., Wheeler M., Zinn-Justin P., “Refined {C}auchy/{L}ittlewood identities and six-vertex model partition functions: II. Proofs and new conjectures”, J. Algebraic Combin., 42 (2015), 555–603, arXiv: 1405.7035 | DOI | MR

[2] de Bruijn N. G., “On some multiple integrals involving determinants”, J. Indian Math. Soc. (N.S.), 19 (1955), 133–151 | MR

[3] van de Bult F. J., “An elliptic hypergeometric integral with $W(F_4)$ symmetry”, Ramanujan J., 25 (2011), 1–20, arXiv: 0909.4793 | DOI | MR

[4] van de Bult F. J., Two multivariate quadratic transformations of elliptic hypergeometric integrals, arXiv: 1109.1123

[5] van de Bult F. J., “Elliptic hypergeometric functions”, Symmetries and Integrability of Difference Equations, CRM Ser. Math. Phys., Springer, Cham, 2017, 43–74 | DOI | MR

[6] van de Bult F. J., Rains E. M., Limits of multivariate elliptic hypergeometric biorthogonal functions, arXiv: 1110.1458 | MR

[7] Cooper S., “The Askey–Wilson operator and the ${}_6\Phi_5$ summation formula”, South East Asian J. Math. Math. Sci., 1 (2002), 71–82 | MR

[8] Derkachev S. E., Spiridonov V. P., “The Yang–Baxter equation, parameter permutations, and the elliptic beta integral”, Russian Math. Surveys, 68 (2013), 1027–1072, arXiv: 1205.3520 | DOI | MR

[9] van Diejen J. F., “Integrability of difference Calogero–Moser systems”, J. Math. Phys., 35 (1994), 2983–3004 | DOI | MR

[10] van Diejen J. F., Spiridonov V. P., “An elliptic Macdonald–Morris conjecture and multiple modular hypergeometric sums”, Math. Res. Lett., 7 (2000), 729–746 | DOI | MR

[11] van Diejen J. F., Spiridonov V. P., “Elliptic Selberg integrals”, Internat. Math. Res. Notices, 2001 (2001), 1083–1110 | DOI | MR

[12] Filali G., “Elliptic dynamical reflection algebra and partition function of SOS model with reflecting end”, J. Geom. Phys., 61 (2011), 1789–1796, arXiv: 1012.0516 | DOI | MR

[13] Frenkel I. B., Turaev V. G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR

[14] Gustafson R. A., “A generalization of Selberg's beta integral”, Bull. Amer. Math. Soc. (N.S.), 22 (1990), 97–105 | DOI | MR

[15] Ismail M., Rains E. M., Stanton D., Orthogonality of very well-poised series, in preparation

[16] Izergin A. G., “Partition function of a six-vertex model in a finite volume”, Dokl. Akad. Nauk SSSR, 297 (1987), 331–333 | MR

[17] Kawanaka N., “A $q$-series identity involving Schur functions and related topics”, Osaka J. Math., 36 (1999), 157–176 | MR

[18] Koornwinder T. H., “Askey–Wilson polynomials for root systems of type $BC$”, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992, 189–204 | DOI | MR

[19] Korepin V. E., “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR

[20] Langer R., Schlosser M. J., Warnaar S. O., “Theta functions, elliptic hypergeometric series, and Kawanaka's Macdonald polynomial conjecture”, SIGMA, 5 (2009), 055, 20 pp., arXiv: 0905.4033 | DOI | MR

[21] Okada S., “Applications of minor summation formulas to rectangular-shaped representations of classical groups”, J. Algebra, 205 (1998), 337–367 | DOI | MR

[22] Okounkov A., “${\rm BC}$-type interpolation Macdonald polynomials and binomial formula for {K}oornwinder polynomials”, Transform. Groups, 3 (1998), 181–207, arXiv: q-alg/9611011 | DOI | MR

[23] Rains E. M., Ruijsenaars S., “Difference operators of Sklyanin and van Diejen type”, Comm. Math. Phys., 320 (2013), 851–889, arXiv: 1203.0042 | DOI | MR

[24] Rains E. M., “${\rm BC}_n$-symmetric polynomials”, Transform. Groups, 10 (2005), 63–132, arXiv: math.QA/0112035 | DOI | MR

[25] Rains E. M., “$BC_n$-symmetric Abelian functions”, Duke Math. J., 135 (2006), 99–180, arXiv: math.CO/0402113 | DOI | MR

[26] Rains E. M., “A difference-integral representation of Koornwinder polynomials”, Jack, Hall–Littlewood and Macdonald Polynomials, Contemp. Math., 417, Amer. Math. Soc., Providence, RI, 2006, 319–333, arXiv: math.CA/0409437 | DOI | MR

[27] Rains E. M., “Transformations of elliptic hypergeometric integrals”, Ann. of Math., 171 (2010), 169–243, arXiv: math.QA/0309252 | DOI | MR

[28] Rains E. M., “Elliptic Littlewood identities”, J. Combin. Theory Ser. A, 119 (2012), 1558–1609, arXiv: 0806.0871 | DOI | MR

[29] Rains E. M., Vazirani M., “Vanishing integrals of Macdonald and Koornwinder polynomials”, Transform. Groups, 12 (2007), 725–759 | DOI | MR

[30] Rains E. M., Elliptic double affine Hecke algebras, arXiv: 1709.02989

[31] Spiridonov V. P., “On the elliptic beta function”, Russian Math. Surveys, 56 (2001), 185–186 | DOI | MR

[32] Spiridonov V. P., “A Bailey tree for integrals”, Theoret. and Math. Phys., 139 (2004), 536–541, arXiv: math.CA/0312502 | DOI | MR

[33] Spiridonov V. P., Warnaar S. O., “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207 (2006), 91–132, arXiv: math.CA/0411044 | DOI | MR

[34] Tate J., “A review of non-Archimedean elliptic functions”, Elliptic Curves, Modular Forms, Fermat's Last Theorem (Hong Kong, 1993), Ser. Number Theory, I, Int. Press, Cambridge, MA, 1995, 162–184 | MR

[35] Warnaar S. O., “Bisymmetric functions, Macdonald polynomials and $\mathfrak{sl}_3$ basic hypergeometric series”, Compos. Math., 144 (2008), 271–303, arXiv: math.CO/0511333 | DOI | MR

[36] Zinn-Justin P., “Sum rule for the eight-vertex model on its combinatorial line”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013, 599–637, arXiv: . 1202.4420 | DOI | MR